Active forces shape the metaphase spindle through a mechanical instability

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • David Oriola - , Max Planck Institute of Molecular Cell Biology and Genetics, Zentrum für Systembiologie Dresden (CSBD), Max-Planck-Institut für Physik komplexer Systeme, Technische Universität Dresden (Autor:in)
  • Frank Jülicher - , Zentrum für Systembiologie Dresden (CSBD), Max-Planck-Institut für Physik komplexer Systeme, Technische Universität Dresden (Autor:in)
  • Jan Brugués - , Exzellenzcluster PoL: Physik des Lebens, Max Planck Institute of Molecular Cell Biology and Genetics, Zentrum für Systembiologie Dresden (CSBD), Max-Planck-Institut für Physik komplexer Systeme (Autor:in)

Abstract

The metaphase spindle is a dynamic structure orchestrating chromosome segregation during cell division. Recently, soft matter approaches have shown that the spindle behaves as an active liquid crystal. Still, it remains unclear how active force generation contributes to its characteristic spindle-like shape. Here we combine theory and experiments to show that molecular motor-driven forces shape the structure through a barreling-type instability. We test our physical model by titrating dynein activity in Xenopus egg extract spindles and quantifying the shape and microtubule orientation. We conclude that spindles are shaped by the interplay between surface tension, nematic elasticity, and motor-driven active forces. Our study reveals how motor proteins can mold liquid crystalline droplets and has implications for the design of active soft materials.

Details

OriginalspracheEnglisch
Seiten (von - bis)16154-16159
Seitenumfang6
FachzeitschriftProceedings of the National Academy of Sciences of the United States of America
Jahrgang117
Ausgabenummer28
PublikationsstatusVeröffentlicht - 14 Juli 2020
Peer-Review-StatusJa

Externe IDs

PubMed 32601228

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Active matter, Dynein, Liquid crystals, Mitotic spindle, Xenopus laevis