Active Control of Energy Transfer in Plasmonic Nanorod-Polyaniline Hybrids

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Annette Jones - , Rice University (Autor:in)
  • Emily K. Searles - , Rice University (Autor:in)
  • Martin Mayer - , Leibniz Institute of Polymer Research Dresden (Autor:in)
  • Marisa Hoffmann - , Leibniz Institute of Polymer Research Dresden (Autor:in)
  • Niklas Gross - , Rice University (Autor:in)
  • Hyuncheol Oh - , Rice University (Autor:in)
  • Andreas Fery - , Leibniz Institute of Polymer Research Dresden (Autor:in)
  • Stephan Link - , Rice University (Autor:in)
  • Christy F. Landes - , Rice University (Autor:in)

Abstract

The hybridization of plasmonic energy and charge donors with polymeric acceptors is a possible means to overcome fast internal relaxation that limits potential photocatalytic applications for plasmonic nanomaterials. Polyaniline (PANI) readily hybridizes onto gold nanorods (AuNRs) and has been used for the sensitive monitoring of local refractive index changes. Here, we use single-particle spectroscopy to quantify a previously unreported plasmon damping mechanism in AuNR-PANI hybrids while actively tuning the PANI chemical structure. By eliminating contributions from heterogeneous line width broadening and refractive index changes, we identify efficient resonance energy transfer (RET) between AuNRs and PANI. We find that RET dominates the optical response in our AuNR-PANI hybrids during the dynamic tuning of the spectral overlap of the AuNR donor and PANI acceptor. Harnessing RET between plasmonic nanomaterials and an affordable and processable polymer such as PANI offers an alternate mechanism toward efficient photocatalysis with plasmonic nanoparticle antennas.

Details

OriginalspracheEnglisch
Seiten (von - bis)8235-8243
Seitenumfang9
FachzeitschriftJournal of Physical Chemistry Letters
Jahrgang14
Ausgabenummer36
PublikationsstatusVeröffentlicht - 14 Sept. 2023
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

PubMed 37676024