A spectral characterization of exponential stability for linear time-invariant systems on time scales
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We prove a necessary and sufficient condition for the exponential stability of time-invariant linear systems on time scales in terms of the eigenvalues of the system matrix. In particular, this unifies the corresponding characterizations for finite-dimensional differential and difference equations. To this end we use a representation formula for the transition matrix of Jordan reducible systems in the regressive case. Also we give conditions under which the obtained characterizations can be exactly calculated and explicitly calculate the region of stability for several examples.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1223-1241 |
Seitenumfang | 19 |
Fachzeitschrift | Discrete and continuous dynamical systems |
Jahrgang | 9 |
Ausgabenummer | 5 |
Publikationsstatus | Veröffentlicht - Sept. 2003 |
Peer-Review-Status | Ja |
Extern publiziert | Ja |
Externe IDs
ORCID | /0000-0003-0967-6747/work/149795385 |
---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Exponential Stability, Linear Dynamic Equation, Time Scale