A Regularity Theory for Random Elliptic Operators

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Antoine Gloria - , Université libre de Bruxelles (ULB) (Autor:in)
  • Stefan Neukamm - , Fakultät Mathematik (Autor:in)
  • Felix Otto - , Max-Planck-Institut für Mathematik in den Naturwissenschaften (Autor:in)

Abstract

Since the seminal results by Avellaneda & Lin it is known that elliptic operators with periodic coefficients enjoy the same regularity theory as the Laplacian on large scales. In a recent inspiring work, Armstrong & Smart proved large-scale Lipschitz estimates for such operators with random coefficients satisfying a finite-range of dependence assumption. In the present contribution, we extend the intrinsic large-scale regularity of Avellaneda & Lin (namely, intrinsic large-scale Schauder and Calderon-Zygmund estimates) to elliptic systems with random coefficients. The scale at which this improved regularity kicks in is characterized by a stationary field r(*) which we call the minimal radius. This regularity theory is qualitative in the sense that r(*) is almost surely finite (which yields a new Liouville theorem) under mere ergodicity, and it is quantifiable in the sense thatr(*) has high stochastic integrability provided the coefficients satisfy quantitative mixing assumptions. We illustrate this by establishing optimal moment bounds on r(*) for a class of coefficient fields satisfying a multiscale functional inequality, and in particular for Gaussian-type coefficient fields with arbitrary slow-decaying correlations.

Details

OriginalspracheEnglisch
Seiten (von - bis)99-170
Seitenumfang72
FachzeitschriftMilan journal of mathematics
Jahrgang88
Ausgabenummer1
PublikationsstatusVeröffentlicht - Juni 2020
Peer-Review-StatusJa

Externe IDs

Scopus 85082940626

Schlagworte

Schlagwörter

  • Quantitative stochastic homogenization, large scale regularity, QUENCHED INVARIANCE-PRINCIPLES, RANDOM CONDUCTANCE MODEL, STOCHASTIC HOMOGENIZATION, LIOUVILLE THEOREM, CORRECTOR, SYSTEMS, EQUATIONS, BOUNDS

Bibliotheksschlagworte