A Refined Conjecture for the Variance of Gaussian Primes across Sectors

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Ryan C. Chen - , Princeton University (Autor:in)
  • Yujin H. Kim - , Columbia University (Autor:in)
  • Jared D. Lichtman - , Dartmouth College (Autor:in)
  • Steven J. Miller - , Williams College (Autor:in)
  • Alina Shubina - , Williams College (Autor:in)
  • Shannon Sweitzer - , University of California at Riverside (Autor:in)
  • Ezra Waxman - , Technische Universität Dresden, Karlsuniversität Prag, Tel Aviv University (Autor:in)
  • Eric Winsor - , University of Michigan, Ann Arbor (Autor:in)
  • Jianing Yang - , Colby College (Autor:in)

Abstract

We derive a refined conjecture for the variance of Gaussian primes across sectors, with a power saving error term, by applying the L-functions Ratios Conjecture. We observe a bifurcation point in the main term, consistent with the Random Matrix Theory (RMT) heuristic previously proposed by Rudnick and Waxman. Our model also identifies a second bifurcation point, undetected by the RMT model, that emerges upon taking into account lower order terms. For sufficiently small sectors, we moreover prove an unconditional result that is consistent with our conjecture down to lower order terms.

Details

OriginalspracheEnglisch
Seiten (von - bis)33-53
Seitenumfang21
FachzeitschriftExperimental mathematics
Jahrgang32
Ausgabenummer1
PublikationsstatusVeröffentlicht - 2023
Peer-Review-StatusJa

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Gaussian Primes, Hecke L-functions, Random Matrix Theory, Ratios Conjecture

Bibliotheksschlagworte