A probabilistic proof of Schoenberg's theorem

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

Assume that g(|ξ| 2 ), ξ∈R k , is for every dimension k∈N the characteristic function of an infinitely divisible random variable X k . By a classical result of Schoenberg f:=−log⁡g is a Bernstein function. We give a simple probabilistic proof of this result starting from the observation that X k =X 1 k can be embedded into a Lévy process (X t k ) t≥0 and that Schoenberg's theorem says that (X t k ) t≥0 is subordinate to a Brownian motion. Key ingredients in our proof are concrete formulae which connect the transition densities, resp., Lévy measures of subordinated Brownian motions across different dimensions. As a by-product of our proof we obtain a gradient estimate for the transition semigroup of a subordinated Brownian motion.

Details

OriginalspracheEnglisch
Seiten (von - bis)13-26
Seitenumfang14
FachzeitschriftJournal of mathematical analysis and applications
Jahrgang476
Ausgabenummer1
PublikationsstatusVeröffentlicht - 1 Aug. 2019
Peer-Review-StatusJa

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Hartman–Wintner condition, Lévy process, Negative definite function, Subordination, Transition density