A probabilistic proof of Schoenberg's theorem
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
Assume that g(|ξ| 2 ), ξ∈R k , is for every dimension k∈N the characteristic function of an infinitely divisible random variable X k . By a classical result of Schoenberg f:=−logg is a Bernstein function. We give a simple probabilistic proof of this result starting from the observation that X k =X 1 k can be embedded into a Lévy process (X t k ) t≥0 and that Schoenberg's theorem says that (X t k ) t≥0 is subordinate to a Brownian motion. Key ingredients in our proof are concrete formulae which connect the transition densities, resp., Lévy measures of subordinated Brownian motions across different dimensions. As a by-product of our proof we obtain a gradient estimate for the transition semigroup of a subordinated Brownian motion.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 13-26 |
Seitenumfang | 14 |
Fachzeitschrift | Journal of mathematical analysis and applications |
Jahrgang | 476 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - 1 Aug. 2019 |
Peer-Review-Status | Ja |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Hartman–Wintner condition, Lévy process, Negative definite function, Subordination, Transition density