A poset structure on the alternating group generated by 3-cycles

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

We investigate the poset structure on the alternating group that arises when the latter is generated by 3-cycles. We study intervals in this poset and give several enumerative results, as well as a complete description of the orbits of the Hurwitz action on maximal chains. Our motivating example is the well-studied absolute order arising when the symmetric group is generated by transpositions, i.e. 2-cycles, and we compare our results to this case along the way. In particular, noncrossing partitions arise naturally in both settings.

Details

OriginalspracheEnglisch
Seiten (von - bis)1285-1310
Seitenumfang26
FachzeitschriftAlgebraic Combinatorics
Jahrgang2
Ausgabenummer6
PublikationsstatusVeröffentlicht - Dez. 2019
Peer-Review-StatusJa

Schlagworte

Schlagwörter

  • Alternating group, Hurwitz action, Noncrossing partitions, Symmetric group, Zeta polynomial

Bibliotheksschlagworte