A poset structure on the alternating group generated by 3-cycles
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We investigate the poset structure on the alternating group that arises when the latter is generated by 3-cycles. We study intervals in this poset and give several enumerative results, as well as a complete description of the orbits of the Hurwitz action on maximal chains. Our motivating example is the well-studied absolute order arising when the symmetric group is generated by transpositions, i.e. 2-cycles, and we compare our results to this case along the way. In particular, noncrossing partitions arise naturally in both settings.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1285-1310 |
Seitenumfang | 26 |
Fachzeitschrift | Algebraic Combinatorics |
Jahrgang | 2 |
Ausgabenummer | 6 |
Publikationsstatus | Veröffentlicht - Dez. 2019 |
Peer-Review-Status | Ja |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Alternating group, Hurwitz action, Noncrossing partitions, Symmetric group, Zeta polynomial