A pH-driven transition of the cytoplasm from a fluid- to a solid-like state promotes entry into dormancy

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Matthias Christoph Munder - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Daniel Midtvedt - , Max-Planck-Institut für Physik komplexer Systeme (Autor:in)
  • Titus Franzmann - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Elisabeth Nüske - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Oliver Otto - , Professur für Zelluläre Maschinen (Autor:in)
  • Maik Herbig - , Fakultät Physik (Autor:in)
  • Elke Ulbricht - , Professur für Zelluläre Maschinen (Autor:in)
  • Paul Müller - , Professur für Zelluläre Maschinen (Autor:in)
  • Anna Taubenberger - , Professur für Zelluläre Maschinen (Autor:in)
  • Shovamayee Maharana - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Liliana Malinovska - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Doris Richter - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Jochen Guck - , Professur für Zelluläre Maschinen (Autor:in)
  • Vasily Zaburdaev - , Max-Planck-Institut für Physik komplexer Systeme (Autor:in)
  • Simon Alberti - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)

Abstract

Cells can enter into a dormant state when faced with unfavorable conditions. However, how cells enter into and recover from this state is still poorly understood. Here, we study dormancy in different eukaryotic organisms and find it to be associated with a significant decrease in the mobility of organelles and foreign tracer particles. We show that this reduced mobility is caused by an influx of protons and a marked acidification of the cytoplasm, which leads to widespread macromolecular assembly of proteins and triggers a transition of the cytoplasm to a solid-like state with increased mechanical stability. We further demonstrate that this transition is required for cellular survival under conditions of starvation. Our findings have broad implications for understanding alternative physiological states, such as quiescence and dormancy, and create a new view of the cytoplasm as an adaptable fluid that can reversibly transition into a protective solid-like state.

Details

OriginalspracheEnglisch
Aufsatznummere09347
FachzeitschrifteLife
Jahrgang5
AusgabenummerMARCH2016
PublikationsstatusVeröffentlicht - 22 März 2016
Peer-Review-StatusJa

Externe IDs

PubMed 27003292
ORCID /0000-0003-4017-6505/work/142253874
ORCID /0000-0002-4281-7209/work/196680194