Parametric finite-element discretization of the surface Stokes equations: inf-sup stability and discretization error analysis

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Abstract

We study a higher-order surface finite-element penalty-based discretization of the tangential surface Stokes problem. Several discrete formulations are investigated, which are equivalent in the continuous setting. The impact of the choice of discretization of the diffusion term and of the divergence term on numerical accuracy and convergence, as well as on implementation advantages, is discussed. We analyse the inf-sup stability of the discrete scheme in a generic approach by lifting stable finite-element pairs known from the literature. A discretization error analysis in tangential norms then shows optimal order convergence of an isogeometric setting that requires only geometric knowledge of the discrete surface.

Details

OriginalspracheEnglisch
Seiten (von - bis)1-40
Seitenumfang40
FachzeitschriftIMA Journal of Numerical Analysis
Jahrgangdrae080
PublikationsstatusVeröffentlicht - 23 Dez. 2024
Peer-Review-StatusJa

Schlagworte