A novel supervised trajectory segmentation algorithm identifies distinct types of human adenovirus motion in host cells

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Jo A. Helmuth - , ETH Zurich (Autor:in)
  • Christoph J. Burckhardt - , Universität Zürich (Autor:in)
  • Petros Koumoutsakos - , ETH Zurich (Autor:in)
  • Urs F. Greber - , Universität Zürich (Autor:in)
  • Ivo F. Sbalzarini - , ETH Zurich (Autor:in)

Abstract

Biological trajectories can be characterized by transient patterns that may provide insight into the interactions of the moving object with its immediate environment. The accurate and automated identification of trajectory motifs is important for the understanding of the underlying mechanisms. In this work, we develop a novel trajectory segmentation algorithm based on supervised support vector classification. The algorithm is validated on synthetic data and applied to the identification of trajectory fingerprints of fluorescently tagged human adenovirus particles in live cells. In virus trajectories on the cell surface, periods of confined motion, slow drift, and fast drift are efficiently detected. Additionally, directed motion is found for viruses in the cytoplasm. The algorithm enables the linking of microscopic observations to molecular phenomena that are critical in many biological processes, including infectious pathogen entry and signal transduction.

Details

OriginalspracheEnglisch
Seiten (von - bis)347-358
Seitenumfang12
FachzeitschriftJournal of Structural Biology
Jahrgang159
Ausgabenummer3
PublikationsstatusVeröffentlicht - Sept. 2007
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

PubMed 17532228

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Computation, Motion pattern, Support vector machine, Trajectory analysis, Trajectory segmentation, Transport, Virus infection