A novel spatter detection algorithm based on typical cellular neural network operations for laser beam welding processes

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Leonardo Nicolosi - , Technische Universität Dresden (Autor:in)
  • Felix Abt - , Universität Stuttgart (Autor:in)
  • Andreas Blug - , Fraunhofer-Institut für Physikalische Messtechnik (Autor:in)
  • A. Heider - , Universität Stuttgart (Autor:in)
  • R. Tetzlaff - , Professur für Grundlagen der Elektrotechnik (GE) (Autor:in)
  • Heinrich Höfler - , Fraunhofer-Institut für Physikalische Messtechnik (Autor:in)

Abstract

Real-time monitoring of laser beam welding (LBW) has increasingly gained importance in several manufacturing processes ranging from automobile production to precision mechanics. In the latter, a novel algorithm for the real-time detection of spatters was implemented in a camera based on cellular neural networks. The latter can be connected to the optics of commercially available laser machines leading to real-time monitoring of LBW processes at rates up to 15 kHz. Such high monitoring rates allow the integration of other image evaluation tasks such as the detection of the full penetration hole for real-time control of process parameters.

Details

OriginalspracheEnglisch
Aufsatznummer015401
FachzeitschriftMeasurement Science and Technology
Jahrgang23
Ausgabenummer1
PublikationsstatusVeröffentlicht - 5 Dez. 2012
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0001-7436-0103/work/142240326

Schlagworte

Schlagwörter

  • Cellular neural networks, imaging systems, laser welding, monitoring systems, SIMD processor, spatters, system application and experience, time resolved imaging