A novel pattern recognition algorithm to classify membrane protein unfolding pathways with high-throughput single-molecule force spectroscopy

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

MOTIVATION: Misfolding of membrane proteins plays an important role in many human diseases such as retinitis pigmentosa, hereditary deafness and diabetes insipidus. Little is known about membrane proteins as there are only very few high-resolution structures. Single-molecule force spectroscopy is a novel technique, which measures the force necessary to pull a protein out of a membrane. Such force curves contain valuable information on the protein structure, conformation, and inter- and intra-molecular forces. High-throughput force spectroscopy experiments generate hundreds of force curves including spurious ones and good curves, which correspond to different unfolding pathways. Manual analysis of these data is a bottleneck and source of inconsistent and subjective annotation.

RESULTS: We propose a novel algorithm for the identification of spurious curves and curves representing different unfolding pathways. Our algorithm proceeds in three stages: first, we reduce noise in the curves by applying dimension reduction; second, we align the curves with dynamic programming and compute pairwise distances and third, we cluster the curves based on these distances. We apply our method to a hand-curated dataset of 135 force curves of bacteriorhodopsin mutant P50A. Our algorithm achieves a success rate of 81% distinguishing spurious from good curves and a success rate of 76% classifying unfolding pathways. As a result, we discuss five different unfolding pathways of bacteriorhodopsin including three main unfolding events and several minor ones. Finally, we link folding barriers to the degree of conservation of residues. Overall, the algorithm tackles the force spectroscopy bottleneck and leads to more consistent and reproducible results paving the way for high-throughput analysis of structural features of membrane proteins.

Details

OriginalspracheEnglisch
Seiten (von - bis)231-236
Seitenumfang6
FachzeitschriftBioinformatics
Jahrgang23
Ausgabenummer2
PublikationsstatusVeröffentlicht - 15 Jan. 2007
Peer-Review-StatusJa

Externe IDs

PubMed 17237097
Scopus 33846693208
ORCID /0000-0003-2848-6949/work/141543320

Schlagworte

Ziele für nachhaltige Entwicklung

Schlagwörter

  • Algorithms, Artificial Intelligence, Bacteriorhodopsins/chemistry, Computer Simulation, Elasticity, Membrane Proteins/chemistry, Microscopy, Atomic Force/methods, Models, Chemical, Models, Molecular, Numerical Analysis, Computer-Assisted, Pattern Recognition, Automated/methods, Protein Conformation, Protein Denaturation, Protein Folding, Stress, Mechanical