A new class of three-point methods with optimal convergence order eight and its dynamics

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Taher Lotfi - , Islamic Azad University (Autor:in)
  • Somayeh Sharifi - , Islamic Azad University (Autor:in)
  • Mehdi Salimi - , Technische Universität Dresden (Autor:in)
  • Stefan Siegmund - , Zentrum für Dynamik, Professur für Dynamik und Steuerung, Technische Universität Dresden (Autor:in)

Abstract

We establish a new class of three-point methods for the computation of simple zeros of a scalar function. Based on the two-point optimal method by Ostrowski (1966), we construct a family of order eight methods which use three evaluations of f and one of f′ and therefore have an efficiency index equal to (Formula presented.) and are optimal in the sense of the Kung and Traub conjecture (Kung and Traub J. Assoc. Comput. Math. 21, 634–651, 1974). Moreover, the dynamics of the proposed methods are shown with some comparisons to other existing methods. Numerical comparison with existing optimal schemes suggests that the new class provides a valuable alternative for solving nonlinear equations.

Details

OriginalspracheEnglisch
Seiten (von - bis)261-288
Seitenumfang28
FachzeitschriftNumerical algorithms
Jahrgang68
Ausgabenummer2
PublikationsstatusVeröffentlicht - Feb. 2015
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0003-0967-6747/work/149795401

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Computational efficiency, Kung and Traub conjecture, Optimal order of convergence, Simple root, Three-step iterative method