A NEW APPROACH TO RECOVERY OF DISCONTINUOUS GALERKIN

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

A new recovery operator P : Q(n)(disc)(T) -> Q(n+1)(disc)(M) for discontinuous Galerkin is derived. It is based on the idea of projecting a discontinuous, piecewise polynomial solution on a given mesh T into a higher order polynomial space on a macro mesh M. In order to do so, we define local degrees of freedom using polynomial moments and provide global degrees of freedom on the macro mesh. We prove consistency with respect to the local L-2-projection, stability results in several norms and optimal anisotropic error estimates. As an example, we apply this new recovery technique to a stabilized solution of a singularly perturbed convection-diffusion problem using bilinear elements.

Details

OriginalspracheEnglisch
Seiten (von - bis)697-712
Seitenumfang16
FachzeitschriftJournal of computational mathematics
Jahrgang27
Ausgabenummer6
PublikationsstatusVeröffentlicht - Nov. 2009
Peer-Review-StatusJa

Externe IDs

Scopus 72449169437
ORCID /0000-0002-2458-1597/work/142239720

Schlagworte

Schlagwörter

  • Discontinuous Galerkin, Postprocessing, Recovery, CONVECTION-DIFFUSION PROBLEM, SUPERCONVERGENCE, ELEMENTS, SDFEM