A new algorithm for mode detection in travel surveys: Mobile technologies for activity-travel data collection and analysis

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in Buch/Sammelband/GutachtenBeigetragenBegutachtung

Beitragende

  • Birgit Kohla - , Universität für Bodenkultur Wien (Autor:in)
  • Regine Gerike - , Universität für Bodenkultur Wien (Autor:in)
  • Reinhard Hössinger - , Universität für Bodenkultur Wien (Autor:in)
  • Michael Meschik - , Universität für Bodenkultur Wien (Autor:in)
  • Gerd Sammer - , Universität für Bodenkultur Wien (Autor:in)
  • Wiebke Unbehaun - , Universität für Bodenkultur Wien (Autor:in)

Abstract

New technologies offer various opportunities for advancing travel surveys. This chapter presents a new approach for automated identification of trip stages and travel modes as the core outcome from travel surveys and a key requirement for subsequent steps, such as the automated assignment of trips. Mode prediction of eight modes of transport is realized by two multinomial logistic regression models, based on only nine features from GPS and acceleration data. The algorithm achieved an overall detection rate of 79 percent. The authors found that motorcycle and moped, railway, bicycle, and pedestrian obtained better results, whereas urban public transport caused some difficulties in detection. 2014 by IGI Global. All rights reserved.

Details

OriginalspracheEnglisch
TitelMobile Technologies for Activity-Travel Data Collection and Analysis
Redakteure/-innenSoora Rasouli, Harry Timmermans
Herausgeber (Verlag)IGI Global
Seiten134-151
Seitenumfang18
ISBN (elektronisch)9781466661714
ISBN (Print)1466661704, 9781466661707
PublikationsstatusVeröffentlicht - 30 Juni 2014
Peer-Review-StatusJa
Extern publiziertJa