A method for the graphical modeling of relative temporal constraints

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Sebastian Mate - , Universitätsklinikum der Friedrich-Alexander-Universität Erlangen-Nürnberg (Autor:in)
  • Thomas Bürkle - , Berner Fachhochschule (Autor:in)
  • Lorenz A Kapsner - , Universitätsklinikum der Friedrich-Alexander-Universität Erlangen-Nürnberg (Autor:in)
  • Dennis Toddenroth - , Friedrich-Alexander-Universität Erlangen-Nürnberg (Autor:in)
  • Marvin O Kampf - , Universitätsklinikum der Friedrich-Alexander-Universität Erlangen-Nürnberg (Autor:in)
  • Martin Sedlmayr - , Institut für Medizinische Informatik und Biometrie, Medizinische Fakultät Carl Gustav Carus Dresden (Autor:in)
  • Ixchel Castellanos - , Universitätsklinikum der Friedrich-Alexander-Universität Erlangen-Nürnberg (Autor:in)
  • Hans-Ulrich Prokosch - , Universitätsklinikum der Friedrich-Alexander-Universität Erlangen-Nürnberg (Autor:in)
  • Stefan Kraus - , Friedrich-Alexander-Universität Erlangen-Nürnberg (Autor:in)

Abstract

Searching for patient cohorts in electronic patient data often requires the definition of temporal constraints between the selection criteria. However, beyond a certain degree of temporal complexity, the non-graphical, form-based approaches implemented in current translational research platforms may be limited when modeling such constraints. In our opinion, there is a need for an easily accessible and implementable, fully graphical method for creating temporal queries. We aim to respond to this challenge with a new graphical notation. Based on Allen's time interval algebra, it allows for modeling temporal queries by arranging simple horizontal bars depicting symbolic time intervals. To make our approach applicable to complex temporal patterns, we apply two extensions: with duration intervals, we enable the inference about relative temporal distances between patient events, and with time interval modifiers, we support counting and excluding patient events, as well as constraining numeric values. We describe how to generate database queries from this notation. We provide a prototypical implementation, consisting of a temporal query modeling frontend and an experimental backend that connects to an i2b2 system. We evaluate our modeling approach on the MIMIC-III database to demonstrate that it can be used for modeling typical temporal phenotyping queries.

Details

OriginalspracheEnglisch
Aufsatznummer103314
FachzeitschriftJournal of biomedical informatics
Jahrgang100
PublikationsstatusVeröffentlicht - Dez. 2019
Peer-Review-StatusJa

Externe IDs

Scopus 85074554772
ORCID /0000-0002-9888-8460/work/166764824

Schlagworte

Schlagwörter

  • Algorithms, Computer Graphics, Computer Simulation, Databases, Factual, Humans, Information Storage and Retrieval, Time