A machine learning model for drought tracking and forecasting using remote precipitation data and a standardized precipitation index from arid regions

Publikation: Beitrag in FachzeitschriftÜbersichtsartikel (Review)BeigetragenBegutachtung

Beitragende

Abstract

Drought is a catastrophe that impacts agriculture and causes economic and social damage. An effective monitoring and forecasting system is needed to assess the extent of droughts and to mitigate their effects at both spatial and temporal levels. To this end, we used a Standardized Precipitation Index (SPI) in various timescales to classify and track drought events based on CHIRPS rainfall data for the period between 1981 and 2019. Three models (M1, M2, M3) were then tested for annual drought prediction (SPI_12) using precipitation data and the lagged SPI as input variables. Extreme Learning Machine algorithms displayed rapid drought prediction, with high accuracy on different timescales (0.7–0.8 R2).

Details

OriginalspracheEnglisch
Aufsatznummer104478
FachzeitschriftJournal of arid environments
Jahrgang189
PublikationsstatusVeröffentlicht - Juni 2021
Peer-Review-StatusJa

Schlagworte

Schlagwörter

  • CHIRPS, Drought, Drought forecast, Extreme learning machine, Standardized precipitation index