A machine learning approach for layout inference in spreadsheets

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Elvis Koci - , Technische Universität Dresden (Autor:in)
  • Maik Thiele - , Technische Universität Dresden (Autor:in)
  • Oscar Romero - , UPC Universitat Politècnica de Catalunya (Barcelona Tech) (Autor:in)
  • Wolfgang Lehner - , Professur für Datenbanken (Autor:in)

Abstract

Spreadsheet applications are one of the most used tools for content generation and presentation in industry and the Web. In spite of this success, there does not exist a comprehensive approach to automatically extract and reuse the richness of data maintained in this format. The biggest obstacle is the lack of awareness about the structure of the data in spreadsheets, which otherwise could provide the means to automatically understand and extract knowledge from these files. In this paper, we propose a classification approach to discover the layout of tables in spreadsheets. Therefore, we focus on the cell level, considering a wide range of features not covered before by related work. We evaluated the performance of our classifiers on a large dataset covering three different corpora from various domains. Finally, our work includes a novel technique for detecting and repairing incorrectly classified cells in a post-processing step. The experimental results show that our approach delivers very high accuracy bringing us a crucial step closer towards automatic table extraction.

Details

OriginalspracheEnglisch
TitelKDIR 2016 - 8th International Conference on Knowledge Discovery and Information Retrieval
Redakteure/-innenAna Fred, Jan Dietz, David Aveiro, Kecheng Liu, Jorge Bernardino, Joaquim Filipe, Joaquim Filipe
Herausgeber (Verlag)SCITEPRESS - Science and Technology Publications
Seiten77-88
Seitenumfang12
ISBN (elektronisch)9789897582035
PublikationsstatusVeröffentlicht - 2016
Peer-Review-StatusJa

Konferenz

Titel8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, IC3K 2016
Dauer9 - 11 November 2016
StadtPorto
LandPortugal

Externe IDs

ORCID /0000-0001-8107-2775/work/142253533

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Knowledge Discovery, Layout, Machine Learning, Speadsheets, Structure, Tabular