A low-complexity machine learning design for mmWave beam prediction

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

Machine learning (ML) for fifth generation (5G)-Advanced air interface is currently being studied by the 3rd Generation Partnership Project (3GPP), where millimeter-wave (mmWave) beam prediction is an important use case. Thereby the targets are to reduce reference signal (RS) overhead, latency, and power consumption, which are currently imperative for frequent beam measurements. To this end, a low-complexity ML design is presented, that exploits the spatial correlation between beam qualities to expedite the spatial-domain beam prediction. Evaluation results showcase that the proposal achieves a beam prediction accuracy of 96 % with 75 % reduction in RS overhead and lower computational complexity as compared to the state of the art. Further, to demonstrate the practicality of the proposed design, we analyze its generalization behavior across different communication scenarios.

Details

OriginalspracheEnglisch
Seiten (von - bis)1551-1555
Seitenumfang5
FachzeitschriftIEEE Wireless Communications Letters
Jahrgang13
Ausgabenummer6
Frühes Online-Datum26 März 2024
PublikationsstatusVeröffentlicht - Juni 2024
Peer-Review-StatusJa

Externe IDs

Scopus 85189304234
ORCID /0000-0002-0738-556X/work/184885141
ORCID /0000-0002-1315-7635/work/184886962
ORCID /0000-0001-7075-8990/work/184887493

Schlagworte

Schlagwörter

  • Beam prediction, low-complexity, machine learning (ML), millimeter-wave (mmWave)