A Korn's inequality for incompatible tensor fields

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

We prove a Korn‐type inequality for bounded Lipschitz domains in $\Omega {\rm ~in~}{\rm I\!R}^3$ and non‐symmetric square integrable tensor fields $P : \Omega \to {\rm I\!R}^{3\times 3}$ having square integrable rotation ${\rm Curl~}P : \Omega \to {\rm I\!R}^{3\times 3}$ . For skew‐symmetric P or compatible $P =\nabla\;v$ our estimate reduces to non‐standard variants of Poincaré's or Korn's first inequality, respectively, for which our new estimate can be viewed as a common generalized version. (© 2011 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Details

OriginalspracheEnglisch
Seiten (von - bis)683-684
Seitenumfang2
FachzeitschriftPAMM
Jahrgang11
Ausgabenummer1
PublikationsstatusVeröffentlicht - Dez. 2011
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0003-4155-7297/work/145698494

Schlagworte