A jeff= ½ pseudospinon continuum in CaIrO3

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Matteo Rossi - , European Synchrotron Radiation Facility, Polytechnic University of Milan, Stanford Linear Accelerator Center (SLAC) (Autor:in)
  • Pietro Marabotti - , Polytechnic University of Milan (Autor:in)
  • Yasuyuki Hirata - , The University of Tokyo, National Defense Academy of Japan (Autor:in)
  • Giulio Monaco - , Università degli Studi di Trento (Autor:in)
  • Michael Krisch - , European Synchrotron Radiation Facility (Autor:in)
  • Kenya Ohgushi - , The University of Tokyo, Tohoku University (Autor:in)
  • Krzysztof Wohlfeld - , University of Warsaw (Autor:in)
  • Jeroen van den Brink - , Exzellenzcluster ct.qmat: Komplexität und Topologie in Quantenmaterialien, Professur für Festkörpertheorie (gB/IFW), Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Marco Moretti Sala - , European Synchrotron Radiation Facility, Polytechnic University of Milan (Autor:in)

Abstract

In so-called jeff= 1 / 2 systems, including some iridates and ruthenates, the coherent superposition of t2 g orbitals in the ground state gives rise to hopping processes that strongly depend on the bond geometry. Resonant inelastic X-ray scattering measurements on CaIrO3 reveal a prototypical jeff= 1 / 2 pseudospinon continuum, a hallmark of one-dimensional (1D) magnetic systems despite its three-dimensional crystal structure. The experimental spectra compare very well to the calculated magnetic dynamical structure factor of weakly coupled spin-1/2 chains. We attribute the onset of such quasi-1D magnetism to the fundamental difference in the magnetic interactions between the jeff= 1 / 2 pseudospins along the corner- and edge-sharing bonds in CaIrO3.

Details

OriginalspracheEnglisch
Aufsatznummer676
FachzeitschriftEuropean Physical Journal Plus
Jahrgang135
Ausgabenummer8
PublikationsstatusVeröffentlicht - 1 Aug. 2020
Peer-Review-StatusJa

Schlagworte

ASJC Scopus Sachgebiete