A hybrid lagrangian relaxation and tabu search method for interdependent-choice network design problems

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in Buch/Sammelband/GutachtenBeigetragenBegutachtung

Beitragende

  • Chi Xie - , University of Texas at Austin (Autor:in)
  • Mark A. Turnquist - , Cornell University (Autor:in)
  • S. Travis Waller - , University of Texas at Austin (Autor:in)

Abstract

Hybridization offers a promising approach in designing and developing improved metaheuristic methods for a variety of complex combinatorial optimization problems. This chapter presents a hybrid Lagrangian relaxation and tabu search method for a class of discrete network design problems with complex interdependent-choice constraints. This method takes advantage of Lagrangian relaxation for problem decomposition and complexity reduction while its algorithmic logic is designed based on the principles of tabu search. The algorithmic advance and solution performance of the method are illustrated by implementing it for solving a network design problem with lane reversal and crossing elimination strategies, arising from urban evacuation planning.

Details

OriginalspracheEnglisch
TitelHybrid Algorithms for Service, Computing and Manufacturing Systems
Herausgeber (Verlag)IGI Global
Seiten294-324
Seitenumfang31
ISBN (Print)9781613500866
PublikationsstatusVeröffentlicht - 2011
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

ORCID /0000-0002-2939-2090/work/141543880

Schlagworte