A Hilbert Space Approach to Fractional Differential Equations
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We study fractional differential equations of Riemann–Liouville and Caputo type in Hilbert spaces. Using exponentially weighted spaces of functions defined on R, we define fractional operators by means of a functional calculus using the Fourier transform. Main tools are extrapolation- and interpolation spaces. Main results are the existence and uniqueness of solutions and the causality of solution operators for non-linear fractional differential equations.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 481-504 |
Seitenumfang | 24 |
Fachzeitschrift | Journal of dynamics and differential equations |
Jahrgang | 34 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - März 2022 |
Peer-Review-Status | Ja |
Externe IDs
ORCID | /0000-0003-0967-6747/work/150327290 |
---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Caputo derivative, Causality, Fractional differential equations, Riemann–Liouville derivative