A Hilbert Space Approach to Fractional Difference Equations
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
We formulate fractional difference equations of Riemann–Liouville and Caputo type in a functional analytical framework. Main results are existence of solutions on Hilbert space-valued weighted sequence spaces and a condition for stability of linear fractional difference equations. Using a functional calculus, we relate the fractional sum to fractional powers of the operator (Formula Presented) with the right shift (Formula Presented) on weighted sequence spaces. Causality of the solution operator plays a crucial role for the description of initial value problems.
Details
| Originalsprache | Englisch |
|---|---|
| Titel | Difference Equations and Discrete Dynamical Systems with Applications - 24th ICDEA 2018 |
| Redakteure/-innen | Martin Bohner, Stefan Siegmund, Roman Šimon Hilscher, Petr Stehlík |
| Herausgeber (Verlag) | Springer |
| Seiten | 115-131 |
| Seitenumfang | 17 |
| ISBN (Print) | 9783030355012 |
| Publikationsstatus | Veröffentlicht - 2020 |
| Peer-Review-Status | Ja |
Publikationsreihe
| Reihe | Springer proceedings in mathematics and statistics |
|---|---|
| Band | 312 |
| ISSN | 2194-1009 |
Konferenz
| Titel | 24th International Conference on Difference Equations and Applications, ICDEA 2018 |
|---|---|
| Dauer | 21 - 25 Mai 2018 |
| Stadt | Dresden |
| Land | Deutschland |
Externe IDs
| ORCID | /0000-0003-0967-6747/work/149795412 |
|---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Computational geometry, Graph theory, Hamilton cycles