A high-order fully Lagrangian particle level-set method for dynamic surfaces
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We present a fully Lagrangian particle level-set method based on high-order polynomial regression. This enables meshfree simulations of dynamic surfaces, relaxing the need for particle-mesh interpolation. Instead, we perform level-set redistancing directly on irregularly distributed particles by polynomial regression in a Newton-Lagrange basis on a set of unisolvent nodes. We demonstrate that the resulting particle closest-point (PCP) redistancing achieves high-order accuracy for 2D and 3D geometries discretized on irregular particle distributions and has better robustness against particle distortion than regression in a monomial basis. Further, we show convergence in classic level-set benchmark cases involving ill-conditioned particle distributions, and we present an example application to multi-phase flow problems involving oscillating and dividing droplets.
Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 113262 |
Seitenumfang | 23 |
Fachzeitschrift | Journal of computational physics |
Jahrgang | 515 (2024) |
Publikationsstatus | Veröffentlicht - 8 Juli 2024 |
Peer-Review-Status | Ja |
Externe IDs
ORCID | /0000-0003-4414-4340/work/172568275 |
---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Closest point transform, Dynamic surfaces, Geometric computing, Level-set methods, Multi-phase flow, Particle methods