A hierarchical neuronal model for generation and online recognition of birdsongs

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Izzet B. Yildiz - , Max-Planck-Institut für Kognitions- und Neurowissenschaften (Autor:in)
  • Stefan J. Kiebel - , Max-Planck-Institut für Kognitions- und Neurowissenschaften (Autor:in)

Abstract

The neuronal system underlying learning, generation and recognition of song in birds is one of the best-studied systems in the neurosciences. Here, we use these experimental findings to derive a neurobiologically plausible, dynamic, hierarchical model of birdsong generation and transform it into a functional model of birdsong recognition. The generation model consists of neuronal rate models and includes critical anatomical components like the premotor song-control nucleus HVC (proper name), the premotor nucleus RA (robust nucleus of the arcopallium), and a model of the syringeal and respiratory organs. We use Bayesian inference of this dynamical system to derive a possible mechanism for how birds can efficiently and robustly recognize the songs of their conspecifics in an online fashion. Our results indicate that the specific way birdsong is generated enables a listening bird to robustly and rapidly perceive embedded information at multiple time scales of a song. The resulting mechanism can be useful for investigating the functional roles of auditory recognition areas and providing predictions for future birdsong experiments.

Details

OriginalspracheEnglisch
Aufsatznummere1002303
FachzeitschriftPLOS computational biology
Jahrgang7
Ausgabenummer12
PublikationsstatusVeröffentlicht - Dez. 2011
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

PubMed 22194676