A Goal-Oriented Specification Language for Reinforcement Learning

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

The design of reinforcement learning (RL) agents is difficult, especially in domains with complex and possibly conflicting objectives such as autonomous driving. In addition to the formal nature of RL with high technical barriers, the fragility of the reward signal results in the common trial-and-error practice in the design of RL agents. We propose a novel goal-oriented specification language that is tailored to reinforcement learning but abstracts from technical details. To overcome the problematic trial-and-error practice, our specification language provides the foundation for an easy and systematic design process in RL.

Details

OriginalspracheEnglisch
TitelModeling Decisions for Artificial Intelligence
Redakteure/-innenVicenç Torra, Yasuo Narukawa
Seiten169-180
Seitenumfang12
ISBN (elektronisch)978-3-031-33498-6
PublikationsstatusVeröffentlicht - 2023
Peer-Review-StatusJa

Publikationsreihe

ReiheLecture Notes in Computer Science
Band13890
ISSN0302-9743

Externe IDs

Scopus 85161160259

Schlagworte

Schlagwörter

  • goals, reinforcement learning, specification language