A global div-curl-lemma for mixed boundary conditions in weak Lipschitz domains and a corresponding generalized A0∗-A1-lemma
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We prove global and local versions of the so-called div-curl-lemma, a crucial result in the homogenization theory of partial differential equations, for mixed boundary conditions on bounded weak Lipschitz domains in 3D with weak Lipschitz interfaces. We will generalize our results using an abstract Hilbert space setting, which shows corresponding results to hold in arbitrary dimensions as well as for various differential operators. The crucial tools and the core of our arguments are Hilbert complexes and related compact embeddings.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 33-58 |
Seitenumfang | 26 |
Fachzeitschrift | Analysis : international mathematical journal of analysis and its applications |
Jahrgang | 39 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - 1 Mai 2019 |
Peer-Review-Status | Ja |
Externe IDs
ORCID | /0000-0003-4155-7297/work/145224243 |
---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- compensated compactness, div-curl-lemma, Maxwell's equations, mixed boundary conditions, weak Lipschitz domains