A global div-curl-lemma for mixed boundary conditions in weak Lipschitz domains and a corresponding generalized A0-A1-lemma

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

We prove global and local versions of the so-called div-curl-lemma, a crucial result in the homogenization theory of partial differential equations, for mixed boundary conditions on bounded weak Lipschitz domains in 3D with weak Lipschitz interfaces. We will generalize our results using an abstract Hilbert space setting, which shows corresponding results to hold in arbitrary dimensions as well as for various differential operators. The crucial tools and the core of our arguments are Hilbert complexes and related compact embeddings.

Details

OriginalspracheEnglisch
Seiten (von - bis)33-58
Seitenumfang26
FachzeitschriftAnalysis : international mathematical journal of analysis and its applications
Jahrgang39
Ausgabenummer2
PublikationsstatusVeröffentlicht - 1 Mai 2019
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0003-4155-7297/work/145224243

Schlagworte

Schlagwörter

  • compensated compactness, div-curl-lemma, Maxwell's equations, mixed boundary conditions, weak Lipschitz domains