A Global div-curl-Lemma for Mixed Boundary Conditions in Weak Lipschitz Domains
Publikation: Vorabdruck/Dokumentation/Bericht › Vorabdruck (Preprint)
Beitragende
Abstract
We prove a global version of the so-called div-curl-lemma, a crucial result for compensated compactness and in homogenization theory, for mixed tangential and normal boundary conditions in bounded weak Lipschitz domains in 3D and weak Lipschitz interfaces. The crucial tools and the core of our arguments are the de Rham complex and Weck's selection theorem, the essential compact embedding result for Maxwell's equations.
Details
Originalsprache | Englisch |
---|---|
Publikationsstatus | Veröffentlicht - 1 Aug. 2018 |
Extern publiziert | Ja |
No renderer: customAssociatesEventsRenderPortal,dk.atira.pure.api.shared.model.researchoutput.WorkingPaper
Externe IDs
ORCID | /0000-0003-4155-7297/work/145224272 |
---|
Schlagworte
Schlagwörter
- math.AP, 35B27, 35Q61, 47B07, 46B50