A Global div-curl-Lemma for Mixed Boundary Conditions in Weak Lipschitz Domains

Publikation: Vorabdruck/Dokumentation/BerichtVorabdruck (Preprint)

Beitragende

  • Dirk Pauly - , Universität Duisburg-Essen (Autor:in)

Abstract

We prove a global version of the so-called div-curl-lemma, a crucial result for compensated compactness and in homogenization theory, for mixed tangential and normal boundary conditions in bounded weak Lipschitz domains in 3D and weak Lipschitz interfaces. The crucial tools and the core of our arguments are the de Rham complex and Weck's selection theorem, the essential compact embedding result for Maxwell's equations.

Details

OriginalspracheEnglisch
PublikationsstatusVeröffentlicht - 1 Aug. 2018
Extern publiziertJa
No renderer: customAssociatesEventsRenderPortal,dk.atira.pure.api.shared.model.researchoutput.WorkingPaper

Externe IDs

ORCID /0000-0003-4155-7297/work/145224272

Schlagworte

Schlagwörter

  • math.AP, 35B27, 35Q61, 47B07, 46B50