A geometric interpretation of the transition density of a symmetric Lévy process
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We study for a class of symmetric Lévy processes with state space ℝ n the transition density p t (x) in terms of two one-parameter families of metrics, (d t) t>0 and (δ t) t>0. The first family of metrics describes the diagonal term p t (0); it is induced by the characteristic exponent ψ of the Lévy process by d t(x,y)=√tψ(x-y). The second and new family of metrics δ t relates to √tψ through the formula,where F denotes the Fourier transform. Thus we obtain the following "Gaussian" representation of the transition density:corresponds to a volume term related to p t(0) and where an √tψ. This gives a complete and new geometric, intrinsic interpretation of p t(x).
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1099-1126 |
Seitenumfang | 28 |
Fachzeitschrift | Science China : Mathematics |
Jahrgang | 55 |
Ausgabenummer | 6 |
Publikationsstatus | Veröffentlicht - Juni 2012 |
Peer-Review-Status | Ja |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- heat kernel bounds, infinitely divisible distributions, Lévy processes, metric measure spaces, self-reciprocal distributions, transition function estimates