A generalization of Riesz* homomorphisms on order unit spaces

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

Riesz homomorphisms on vector lattices have been generalized to Riesz* homomorphisms on ordered vector spaces by van Haandel using a condition on sets of finitely many elements. Van Haandel attempted to prove that it suffices to take sets of two elements. We show that this is not true, in general. The description by two elements motivates to introduce mild Riesz* homomorphisms. We investigate their properties on order unit spaces, where the geometry of the dual cone plays a crucial role. Hereby, we mostly focus on the finite-dimensional case.

Details

OriginalspracheEnglisch
Seiten (von - bis)1887-1911
Seitenumfang25
FachzeitschriftQuaestiones mathematicae
Jahrgang47
Ausgabenummer9
PublikationsstatusVeröffentlicht - 2024
Peer-Review-StatusJa

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • functional representation, order unit space, ordered vector space, Riesz* homomorphism