A fixed point exponential function accelerator for a neuromorphic many-core system
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Many models of spiking neural networks heavily rely on exponential waveforms. On neuromorphic multiprocessor systems like SpiNNaker, they have to be approximated by dedicated algorithms, often dominating the processing load. Here we present a processor extension for fast calculation of exponentials, aimed at integration in the next-generation SpiNNaker system. Our implementation achieves single-LSB precision in a 32bit fixed-point format and 250Mexp/s throughput at 0.44nJ/exp for nominal supply (1.0V), or 0.21nJ/exp at 0.7V supply and 77Mexp/s, demonstrating a throughput multiplication of almost 50 and 98% energy reduction at 2% area overhead per processor on a 28nm CMOS chip.
Details
Originalsprache | Englisch |
---|---|
Titel | IEEE International Symposium on Circuits and Systems |
Herausgeber (Verlag) | Institute of Electrical and Electronics Engineers Inc. |
Seitenumfang | 4 |
ISBN (elektronisch) | 9781467368520 |
Publikationsstatus | Veröffentlicht - 25 Sept. 2017 |
Peer-Review-Status | Ja |
Publikationsreihe
Reihe | Proceedings - IEEE International Symposium on Circuits and Systems |
---|---|
ISSN | 0271-4310 |
Konferenz
Titel | IEEE International Symposium on Circuits and Systems 2017 |
---|---|
Kurztitel | ISCAS 2017 |
Veranstaltungsnummer | 50 |
Dauer | 28 - 31 Mai 2017 |
Stadt | Baltimore |
Land | USA/Vereinigte Staaten |
Externe IDs
ORCID | /0000-0002-6286-5064/work/160048714 |
---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- exponential function, MPSoC, neuromorphic computing, SpiNNaker