A fixed point exponential function accelerator for a neuromorphic many-core system

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Many models of spiking neural networks heavily rely on exponential waveforms. On neuromorphic multiprocessor systems like SpiNNaker, they have to be approximated by dedicated algorithms, often dominating the processing load. Here we present a processor extension for fast calculation of exponentials, aimed at integration in the next-generation SpiNNaker system. Our implementation achieves single-LSB precision in a 32bit fixed-point format and 250Mexp/s throughput at 0.44nJ/exp for nominal supply (1.0V), or 0.21nJ/exp at 0.7V supply and 77Mexp/s, demonstrating a throughput multiplication of almost 50 and 98% energy reduction at 2% area overhead per processor on a 28nm CMOS chip.

Details

OriginalspracheEnglisch
TitelIEEE International Symposium on Circuits and Systems
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seitenumfang4
ISBN (elektronisch)9781467368520
PublikationsstatusVeröffentlicht - 25 Sept. 2017
Peer-Review-StatusJa

Publikationsreihe

ReiheProceedings - IEEE International Symposium on Circuits and Systems
ISSN0271-4310

Konferenz

TitelIEEE International Symposium on Circuits and Systems 2017
KurztitelISCAS 2017
Veranstaltungsnummer50
Dauer28 - 31 Mai 2017
StadtBaltimore
LandUSA/Vereinigte Staaten

Externe IDs

ORCID /0000-0002-6286-5064/work/160048714

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • exponential function, MPSoC, neuromorphic computing, SpiNNaker