A Data-Driven Approach for Automating the Design Process of Deep Drawing Tools

Publikation: Beitrag in FachzeitschriftKonferenzartikelBeigetragenBegutachtung

Beitragende

Abstract

The deep drawing tool development process, from method planning and design of tools to tool try-out and final commissioning, is very time-consuming and requires extensive iterative manual effort, particularly during the try-out stage. To accelerate the entire process, integrating obtained knowledge from the tool try-out stage into the early design stage offers significant potential. Towards automating tool design, this paper proposes a data-driven approach using a generative neural network to predict active surfaces of deep drawing tools based on given deep drawn parts, laying the foundation for incorporating try-out knowledge. The model is trained on active tool surfaces and their corresponding deep drawn parts, including variation of geometrical parameters and process parameters in deep drawing simulation. The approach is evaluated using simulated data from deep drawing processes. The proposed solution demonstrates an advancement in automatically generating the active tool surfaces for both the punch and the die directly from the desired deep drawn parts.

Details

OriginalspracheEnglisch
Aufsatznummer012061
FachzeitschriftJournal of Physics: Conference Series
Jahrgang3104
Ausgabenummer1
PublikationsstatusVeröffentlicht - 2025
Peer-Review-StatusJa

Konferenz

Titel13th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes
KurztitelNUMISHEET 2025
Veranstaltungsnummer13
Dauer7 - 11 Juli 2025
Webseite
OrtLeonardo Royal Hotel Munich
StadtMünchen
LandDeutschland

Externe IDs

ORCID /0000-0002-1093-2149/work/199961334

Schlagworte

ASJC Scopus Sachgebiete