A cytokinetic ring-driven cell rotation achieves Hertwig's rule in early development

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Teije C. Middelkoop - , Max Planck Institute of Molecular Cell Biology and Genetics, Czech Academy of Sciences (Autor:in)
  • Jonas Neipel - , Max-Planck-Institut für Physik komplexer Systeme (Autor:in)
  • Caitlin E. Cornell - , University of California at Berkeley (Autor:in)
  • Ronald Naumann - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Lokesh G. Pimpale - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Frank Jülicher - , Max-Planck-Institut für Physik komplexer Systeme, Technische Universität Dresden (Autor:in)
  • Stephan W. Grill - , Exzellenzcluster PoL: Physik des Lebens, Biotechnologisches Zentrum (BIOTEC), Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)

Abstract

Hertwig's rule states that cells divide along their longest axis, usually driven by forces acting on the mitotic spindle. Here, we show that in contrast to this rule, microtubule-based pulling forces in early Caenorhabditis elegans embryos align the spindle with the short axis of the cell. We combine theory with experiments to reveal that in order to correct this misalignment, inward forces generated by the constricting cytokinetic ring rotate the entire cell until the spindle is aligned with the cell's long axis. Experiments with slightly compressed mouse zygotes indicate that this cytokinetic ring-driven mechanism of ensuring Hertwig's rule is general for cells capable of rotating inside a confining shell, a scenario that applies to early cell divisions of many systems.

Details

OriginalspracheEnglisch
Aufsatznummere2318838121
Seiten (von - bis)e2318838121
FachzeitschriftProceedings of the National Academy of Sciences of the United States of America
Jahrgang121
Ausgabenummer25
PublikationsstatusVeröffentlicht - 18 Juni 2024
Peer-Review-StatusJa

Externe IDs

PubMed 38870057

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • actomyosin, biophysics, cell biology, cytokinesis, development, Zygote/metabolism, Caenorhabditis elegans/embryology, Spindle Apparatus/metabolism, Embryonic Development/physiology, Rotation, Microtubules/metabolism, Animals, Models, Biological, Cytokinesis/physiology, Embryo, Nonmammalian/cytology, Mice