A continuous mapping theorem for the argmin-set functional with applications to convex stochastic processes
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
For lower-semicontinuous and convex stochastic processes Zn and nonnegative random variables εn we investigate the pertaining random sets A(Zn, εn) of all εn-approximating minimizers of Zn. It is shown that, if the finite dimensional distributions of the Zn converge to some Z and if the εn converge in probability to some constant c, then the A(Zn, εn) converge in distribution to A(Z, c) in the hyperspace of Vietoris. As a simple corollary we obtain an extension of several argmin-theorems in the literature. In particular, in contrast to these argmin-theorems we do not require that the limit process has a unique minimizing point. In the non-unique case the limit-distribution is replaced by a Choquet-capacity.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 426-445 |
Seitenumfang | 20 |
Fachzeitschrift | Kybernetika |
Jahrgang | 57 |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - 2021 |
Peer-Review-Status | Ja |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Choquet-capacity, Convex stochastic processes, Sets of approximating minimizers, Vietoris hyperspace topologies, Weak convergence