A Consecutive Lehmer Code for Parabolic Quotients of the Symmetric Group.
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
In this article we define an encoding for parabolic permutations that distin-guishes between parabolic 231-avoiding permutations. We prove that the compo-nentwise order on these codes realizes the parabolic Tamari lattice, and conclude a direct and simple proof that the parabolic Tamari lattice is isomorphic to a certain ν-Tamari lattice, with an explicit bijection. Furthermore, we prove that this bijec-tion is closely related to the map Θ used when the lattice isomorphism was first proved in (Ceballos, Fang and Mühle, 2020), settling an open problem therein.
Details
| Originalsprache | Englisch |
|---|---|
| Aufsatznummer | P3.53 |
| Seitenumfang | 28 |
| Fachzeitschrift | The Electronic journal of combinatorics |
| Jahrgang | 28 |
| Ausgabenummer | 3 |
| Publikationsstatus | Veröffentlicht - 2021 |
| Peer-Review-Status | Ja |
Externe IDs
| Scopus | 85115667330 |
|---|