A condensate dynamic instability orchestrates actomyosin cortex activation

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Victoria Tianjing Yan - , Professur für Biophysik, Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Arjun Narayanan - , Professur für Biophysik, Max Planck Institute of Molecular Cell Biology and Genetics, Max-Planck-Institute for the Physics of Complex Systems, Zentrum für Systembiologie Dresden (CSBD) (Autor:in)
  • Tina Wiegand - , Max Planck Institute of Molecular Cell Biology and Genetics, Max-Planck-Institute for the Physics of Complex Systems, Zentrum für Systembiologie Dresden (CSBD) (Autor:in)
  • Frank Jülicher - , Max-Planck-Institute for the Physics of Complex Systems, Zentrum für Systembiologie Dresden (CSBD), Technische Universität Dresden (Autor:in)
  • Stephan W. Grill - , Exzellenzcluster PoL: Physik des Lebens, Biotechnologisches Zentrum (BIOTEC), Max Planck Institute of Molecular Cell Biology and Genetics, Zentrum für Systembiologie Dresden (CSBD) (Autor:in)

Abstract

A key event at the onset of development is the activation of a contractile actomyosin cortex during the oocyte-to-embryo transition1–3. Here we report on the discovery that, in Caenorhabditis elegans oocytes, actomyosin cortex activation is supported by the emergence of thousands of short-lived protein condensates rich in F-actin, N-WASP and the ARP2/3 complex4–8 that form an active micro-emulsion. A phase portrait analysis of the dynamics of individual cortical condensates reveals that condensates initially grow and then transition to disassembly before dissolving completely. We find that, in contrast to condensate growth through diffusion9, the growth dynamics of cortical condensates are chemically driven. Notably, the associated chemical reactions obey mass action kinetics that govern both composition and size. We suggest that the resultant condensate dynamic instability10 suppresses coarsening of the active micro-emulsion11, ensures reaction kinetics that are independent of condensate size and prevents runaway F-actin nucleation during the formation of the first cortical actin meshwork.

Details

OriginalspracheEnglisch
Seiten (von - bis)597-604
Seitenumfang8
FachzeitschriftNature
Jahrgang609
Ausgabenummer7927
PublikationsstatusVeröffentlicht - 15 Sept. 2022
Peer-Review-StatusJa

Externe IDs

PubMed 35978196

Schlagworte

ASJC Scopus Sachgebiete