A Comutational ergodic theorem for infinite iterated function systems
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
Iterated function systems are examples of random dynamical systems and became popular as generators of fractals like the Sierpinski Gasket and the Barnsley Fern. In this paper we prove an ergodic theorem for iterated function systems which consist of countably many functions and which are contractive on average on an arbitrary compact metric space and we provide a computational version of this ergodic theorem in Euclidean space which allows to numerically approximate the time average together with an explicit error bound. The results are applied to an explicit example.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 365-381 |
Seitenumfang | 17 |
Fachzeitschrift | Stochastics and Dynamics |
Jahrgang | 8 |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - 2008 |
Peer-Review-Status | Ja |
Externe IDs
ORCID | /0000-0003-0967-6747/work/172571563 |
---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Ergodic theorem, Iterated function system, Random dynamical system