A Comutational ergodic theorem for infinite iterated function systems

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Nguyen Dinh Cong - , Vietnamese Academy of Science and Technology (Autor:in)
  • Doan Thai Son - , Technische Universität Dresden, Vietnamese Academy of Science and Technology (Autor:in)
  • Stefan Siegmund - , Professur für Dynamik und Steuerung, Technische Universität Dresden (Autor:in)

Abstract

Iterated function systems are examples of random dynamical systems and became popular as generators of fractals like the Sierpinski Gasket and the Barnsley Fern. In this paper we prove an ergodic theorem for iterated function systems which consist of countably many functions and which are contractive on average on an arbitrary compact metric space and we provide a computational version of this ergodic theorem in Euclidean space which allows to numerically approximate the time average together with an explicit error bound. The results are applied to an explicit example.

Details

OriginalspracheEnglisch
Seiten (von - bis)365-381
Seitenumfang17
FachzeitschriftStochastics and Dynamics
Jahrgang8
Ausgabenummer3
PublikationsstatusVeröffentlicht - 2008
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0003-0967-6747/work/172571563

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Ergodic theorem, Iterated function system, Random dynamical system