A Compressed Sensing Integrate-and-Fire Neuron Concept for Massively Parallel Recordings

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Jonas David Rieseler - , Technische Universität Hamburg (Autor:in)
  • Christian Adam - , Technische Universität Hamburg (Autor:in)
  • Andreas Bahr - , Technische Universität Hamburg, Jade Hochschule (Autor:in)
  • Matthias Kuhl - , Albert-Ludwigs-Universität Freiburg (Autor:in)

Abstract

A compressed sensing integrate-and-fire neuron concept for massively parallel recordings is presented which expands the fundamental idea of superimposing timely sparse signals for data compression to any kind of continuous-time signals. Merging compressed sensing and amplitude-to-spike conversion, the proposed approach increases the information density and reduces the channel load. Combining multiple data-compressive neurons as a sensing array, further compression can be achieved when the spikes from different recording sites are superimposed on a single transmission channel. Signal reconstruction quality and transmission channel load are investigated to provide a strategy for selecting the design parameters of the proposed system. A proof-of-concept is presented, where a load per recording channel of 1 % under a relative reconstruction error of 0.32 % (SNR = 25 dB) is achieved.

Details

OriginalspracheEnglisch
Titel2024 IEEE International Symposium on Circuits and Systems (ISCAS)
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers (IEEE)
Seiten1-5
Seitenumfang5
ISBN (elektronisch)979-8-3503-3099-1
ISBN (Print)979-8-3503-3100-4
PublikationsstatusVeröffentlicht - 22 Mai 2024
Peer-Review-StatusJa
Extern publiziertJa

Konferenz

TitelIEEE International Symposium on Circuits and Systems 2024
UntertitelCircuits and Systems for Sustainable Development
KurztitelISCAS 2024
Dauer19 - 22 Mai 2024
Webseite
BekanntheitsgradInternationale Veranstaltung
OrtResorts World Convention Centre
StadtSingapore
LandSingapur

Externe IDs

Scopus 85198564238
ORCID /0000-0001-8012-6794/work/184006556

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Array signal processing, Neurons, Neuroscience, Pattern classification, Recording, Sensors, Signal reconstruction, analog compression, channel reduction, compressed sensing, integrate-and-fire neuron, neural interface, sensor array