A Comparison of Multiscale Methods for the Modelling of Carbon-Reinforced Concrete Structures
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Multiscale techniques allow for the efficient numerical investigation of the structural behavior considering a complex reinforcement distribution. The present contribution compares two multiscale methods in terms of their applicability for thin-walled, carbon-reinforced concrete structures. The first is a coupled multiscale method that simultaneously solves multiple finite element problems (FE2) and provides a smeared material model. The second is the multiscale projection method (MPM) which is capable of reproducing localization effects within a certain domain and their effect on the overall failure of the structure.
For both methods, the problem is divided into a macroscopic and a mesoscopic scale. The former describes the statical system of the shell. The latter considers the distribution and geometry of the reinforcement. Micro-CT data acquired and processed in the scope of CRC/TRR 280 give detailed insight into the mesoscopic scale.
The coupled multiscale model aims to define a representative volume element (RVE) that captures the mesoscopic behavior at each macroscopic point. Shell elements cover the macroscopic behavior of the statical system, while scaled boundary elements represent the mesoscopic model.
The MPM magnifies certain, spatially limited areas where localization phenomena might occur. The overall mesoscopic effects are incorporated by the projection of the mesoscopic stresses onto the macroscale. Here, both scales are modelled using three-dimensional finite elements. On the mesoscale, the extended finite element method (XFEM) is used to reproduce the reinforcement heterogeneities.
In future work, both methods will be used for the analysis of shell-like dissolved concrete structures.
For both methods, the problem is divided into a macroscopic and a mesoscopic scale. The former describes the statical system of the shell. The latter considers the distribution and geometry of the reinforcement. Micro-CT data acquired and processed in the scope of CRC/TRR 280 give detailed insight into the mesoscopic scale.
The coupled multiscale model aims to define a representative volume element (RVE) that captures the mesoscopic behavior at each macroscopic point. Shell elements cover the macroscopic behavior of the statical system, while scaled boundary elements represent the mesoscopic model.
The MPM magnifies certain, spatially limited areas where localization phenomena might occur. The overall mesoscopic effects are incorporated by the projection of the mesoscopic stresses onto the macroscale. Here, both scales are modelled using three-dimensional finite elements. On the mesoscale, the extended finite element method (XFEM) is used to reproduce the reinforcement heterogeneities.
In future work, both methods will be used for the analysis of shell-like dissolved concrete structures.
Details
Originalsprache | Englisch |
---|---|
Titel | Building for the Future |
Redakteure/-innen | Alper Ilki, Derya Çavunt, Yavuz Selim Çavunt |
Erscheinungsort | Cham |
Herausgeber (Verlag) | Springer Nature Switzerland, Dortrecht [u. a.] |
Seiten | 1418-1427 |
Band | 2 |
ISBN (elektronisch) | 978-3-031-32511-3 |
ISBN (Print) | 978-3-031-32510-6, 978-3-031-32513-7 |
Publikationsstatus | Veröffentlicht - 3 Juni 2023 |
Peer-Review-Status | Ja |
Publikationsreihe
Reihe | Lecture notes in civil engineering |
---|---|
Band | 350 |
ISSN | 2366-2557 |
Konferenz
Titel | fib Symposium 2023 |
---|---|
Untertitel | Building for the Future: Durable, Sustainable, Resilient |
Dauer | 5 - 7 Juni 2023 |
Webseite | |
Bekanntheitsgrad | Internationale Veranstaltung |
Ort | Istanbul Technical University Süleyman Demirel Cultural Center |
Stadt | Istanbul |
Land | Türkei |
Externe IDs
Scopus | 85164269161 |
---|---|
ORCID | /0000-0002-8976-6680/work/142236511 |
ORCID | /0000-0001-9453-1125/work/142237990 |
ORCID | /0000-0002-9407-6633/work/142240931 |
ORCID | /0000-0002-1596-7164/work/142255706 |
Mendeley | cf4c6961-9060-3567-af01-933680fda8c2 |
Schlagworte
Forschungsprofillinien der TU Dresden
DFG-Fachsystematik nach Fachkollegium
Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis
Ziele für nachhaltige Entwicklung
Schlagwörter
- SFB/TRR 280, Schalenstrukturen, Multiskalenmodellierung, Fe, MPM, CRC/TRR 280, Shell structures, multiscale modeling, MPM, FE2, Shell Structures, Multiscale Modelling