A Comparison of Heat Storage Densities of Zeolite Granulates Predicted by the Dubinin-polanyi Theory to Experimental Measurements

Publikation: Beitrag in FachzeitschriftKonferenzartikelBeigetragenBegutachtung

Beitragende

  • Christoph Lehmann - , Professur für Angewandte Umweltsystemanalyse (gB/UFZ), Helmholtz-Zentrum für Umweltforschung (UFZ) (Autor:in)
  • Steffen Beckert - , Universität Leipzig (Autor:in)
  • Thomas Nonnen - , Universität Leipzig (Autor:in)
  • Jens Möllmer - , Institut für Nichtklassische Chemie e.V. (INC) (Autor:in)
  • Roger Gläser - , Universität Leipzig (Autor:in)
  • Olaf Kolditz - , Professur für Angewandte Umweltsystemanalyse (gB/UFZ), Helmholtz-Zentrum für Umweltforschung (UFZ) (Autor:in)
  • Thomas Nagel - , Helmholtz-Zentrum für Umweltforschung (UFZ), Trinity College Dublin (Autor:in)

Abstract

Thermochemical heat storage devices based on water adsorption on microporous materials are a viable option for heat storage applications. The Dubinin-Polanyi theory of micropore filling has been widely applied for the thermodynamical characterization of various adsorption working pairs. It has been used for the deduction of adsorption enthalpies from adsorption equilibrium data. How well the theory predicts the dependence of storage densities on the storage cycle characteristics remains to be clarified as it is vital for technology assessment and design. This study compares the heat storage densities predicted by the Dubinin-Polanyi theory to experimentally determined data of two granulated zeolite samples, namely a Na-X and a Ca-X, under various humidity conditions.

Details

OriginalspracheEnglisch
Seiten (von - bis)4334-4339
Seitenumfang6
FachzeitschriftEnergy Procedia
Jahrgang105
PublikationsstatusVeröffentlicht - 2017
Peer-Review-StatusJa

Konferenz

Titel8th International Conference on Applied Energy, ICAE 2016
Dauer8 - 11 Oktober 2016
StadtBeijing
LandChina

Externe IDs

ORCID /0000-0003-2684-102X/work/170583298

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Dubinin-Polany, OpenGeoSys, Thermochemical heat storage, Zeolite