A Comparative Study of Modern Inference Techniques for Discrete Energy Minimization Problems.

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Jörg H. Kappes - , Universität Heidelberg (Autor:in)
  • Björn Andres - , Harvard University (Autor:in)
  • Fred A. Hamprecht - , Universität Heidelberg (Autor:in)
  • Christoph Schnörr - , Universität Heidelberg (Autor:in)
  • Sebastian Nowozin - , Microsoft Research Cambridge (Autor:in)
  • Dhruv Batra - , Virginia Polytechnic Institute and State University (Autor:in)
  • Sungwoong Kim - , Qualcomm (Autor:in)
  • Bernhard X. Kausler - , Universität Heidelberg (Autor:in)
  • Jan Lellmann - , University of Cambridge (Autor:in)
  • Nikos Komodakis - , École des Ponts ParisTech (Autor:in)
  • Carsten Rother - , Microsoft Research Cambridge (Autor:in)

Abstract

Even years ago, Szeliski et al. published an influential study on energy minimization methods for Markov random fields (MRF). This study provided valuable insights in choosing the best optimization technique for certain classes of problems. While these insights remain generally useful today, the phenominal success of random field models means that the kinds of inference problems we solve have changed significantly. Specifically, the models today often include higher order interactions, flexible connectivity structures, large label-spaces of different cardinalities, or learned energy tables. To reflect these changes, we provide a modernized and enlarged study. We present an empirical comparison of 24 state-of-art techniques on a corpus of 2,300 energy minimization instances from 20 diverse computer vision applications. To ensure reproducibility, we evaluate all methods in the OpenGM2 framework and report extensive results regarding runtime and solution quality. Key insights from our study agree with the results of Szeliski et al. for the types of models they studied. However, on new and challenging types of models our findings disagree and suggest that polyhedral methods and integer programming solvers are competitive in terms of runtime and solution quality over a large range of model types.

Details

OriginalspracheEnglisch
Titel2013 IEEE Conference on Computer Vision and Pattern Recognition
Seiten1328-1335
Seitenumfang8
ISBN (elektronisch)978-1-5386-5672-3
PublikationsstatusVeröffentlicht - 2013
Peer-Review-StatusJa
Extern publiziertJa

Publikationsreihe

ReiheConference on Computer Vision and Pattern Recognition (CVPR)
ISSN1063-6919

Externe IDs

Scopus 84887352082
dblp conf/cvpr/KappesAHSNBKKLKR13
ORCID /0000-0001-5036-9162/work/161407127