A Comparative Study of Local Search Algorithms for Correlation Clustering
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
This paper empirically compares four local search algorithms for correlation clustering by applying these to a variety of instances of the correlation clustering problem for the tasks of image segmentation, hand-written digit classification and social network analysis. Although the local search algorithms establish neither lower bounds nor approximation certificates, they converge monotonously to a fixpoint, offering a feasible solution at any time. For some algorithms, the time of convergence is affordable for all instances we consider. This finding encourages a broader application of correlation clustering, especially in settings where the number of clusters is not known and needs to be estimated from data.
Details
Originalsprache | Englisch |
---|---|
Titel | Pattern Recognition |
Redakteure/-innen | Volker Roth, Thomas Vetter |
Herausgeber (Verlag) | Springer, Cham |
Seiten | 103–114 |
ISBN (elektronisch) | 978-3-319-66709-6 |
ISBN (Print) | 978-3-319-66708-9 |
Publikationsstatus | Veröffentlicht - 2017 |
Peer-Review-Status | Ja |
Publikationsreihe
Reihe | Lecture Notes in Computer Science |
---|---|
Band | 10496 |
ISSN | 0302-9743 |
Externe IDs
ORCID | /0000-0001-5036-9162/work/161888479 |
---|