A Comparative Study of Local Search Algorithms for Correlation Clustering

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Evgeny Levinkov - , Max-Planck-Institut für Informatik (Autor:in)
  • Alexander Kirillov - , Professur für Bildverarbeitung (Autor:in)
  • Bjoern Andres - , Max-Planck-Institut für Informatik (Autor:in)

Abstract

This paper empirically compares four local search algorithms for correlation clustering by applying these to a variety of instances of the correlation clustering problem for the tasks of image segmentation, hand-written digit classification and social network analysis. Although the local search algorithms establish neither lower bounds nor approximation certificates, they converge monotonously to a fixpoint, offering a feasible solution at any time. For some algorithms, the time of convergence is affordable for all instances we consider. This finding encourages a broader application of correlation clustering, especially in settings where the number of clusters is not known and needs to be estimated from data.

Details

OriginalspracheEnglisch
TitelPattern Recognition
Redakteure/-innenVolker Roth, Thomas Vetter
Herausgeber (Verlag)Springer, Cham
Seiten103–114
ISBN (elektronisch)978-3-319-66709-6
ISBN (Print)978-3-319-66708-9
PublikationsstatusVeröffentlicht - 2017
Peer-Review-StatusJa

Publikationsreihe

ReiheLecture Notes in Computer Science
Band10496
ISSN0302-9743

Externe IDs

ORCID /0000-0001-5036-9162/work/161888479