A characterization of the individual maximum and anti-maximum principle
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
Abstract approaches to maximum and anti-maximum principles for differential operators typically rely on the condition that all vectors in the domain of the operator are dominated by the leading eigenfunction of the operator. We study the necessity of this condition. In particular, we show that under a number of natural assumptions, so-called individual versions of both the maximum and the anti-maximum principle simultaneously hold if and only if the aforementioned domination condition is satisfied. Consequently, we are able to show that a variety of concrete differential operators do not satisfy an anti-maximum principle.
Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 24 |
Seitenumfang | 17 |
Fachzeitschrift | Mathematische Zeitschrift |
Jahrgang | 305 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - Okt. 2023 |
Peer-Review-Status | Ja |
Externe IDs
Scopus | 85172005763 |
---|---|
Mendeley | 09bfe9da-2f5a-3bac-aad4-2dc227b2e0e3 |
Schlagworte
DFG-Fachsystematik nach Fachkollegium
ASJC Scopus Sachgebiete
Schlagwörter
- Eventual positivity, Eventually positive resolvents, Individual anti-maximum principle, Maximum principle