A case study on machine learning for synthesizing benchmarks

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Good benchmarks are hard to find because they require a substantial effort to keep them representative for the constantly changing challenges of a particular field. Synthetic benchmarks are a common approach to deal with this, and methods from machine learning are natural candidates for synthetic benchmark generation. In this paper we investigate the usefulness of machine learning in the prominent CLgen benchmark generator. We re-evaluate CLgen by comparing the benchmarks generated by the model with the raw data used to train it. This re-evaluation indicates that, for the use case considered, machine learning did not yield additional benefit over a simpler method using the raw data. We investigate the reasons for this and provide further insights into the challenges the problem could pose for potential future generators.

Details

OriginalspracheEnglisch
TitelMAPL 2019 - Proceedings of the 3rd ACM SIGPLAN International Workshop on Machine Learning and Programming Languages, co-located with PLDI 2019
Redakteure/-innenTim Mattson, Abdullah Muzahid, Armando Solar-Lezama
Herausgeber (Verlag)Association for Computing Machinery (ACM), New York
Seiten38-46
Seitenumfang9
ISBN (elektronisch)9781450367196
PublikationsstatusVeröffentlicht - 22 Juni 2019
Peer-Review-StatusJa

Publikationsreihe

ReihePLDI: Programming Language Design and Implementation

Konferenz

Titel3rd ACM SIGPLAN International Workshop on Machine Learning and Programming Languages, MAPL 2019, co-located with PLDI 2019
Dauer22 Juni 2019
StadtPhoenix
LandUSA/Vereinigte Staaten

Externe IDs

ORCID /0000-0002-5007-445X/work/141545540

Schlagworte

Forschungsprofillinien der TU Dresden

ASJC Scopus Sachgebiete

Schlagwörter

  • Benchmarking, CLGen, Generative models, Machine Learning, Synthetic program generation