A case study on machine learning for synthesizing benchmarks
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Good benchmarks are hard to find because they require a substantial effort to keep them representative for the constantly changing challenges of a particular field. Synthetic benchmarks are a common approach to deal with this, and methods from machine learning are natural candidates for synthetic benchmark generation. In this paper we investigate the usefulness of machine learning in the prominent CLgen benchmark generator. We re-evaluate CLgen by comparing the benchmarks generated by the model with the raw data used to train it. This re-evaluation indicates that, for the use case considered, machine learning did not yield additional benefit over a simpler method using the raw data. We investigate the reasons for this and provide further insights into the challenges the problem could pose for potential future generators.
Details
Originalsprache | Englisch |
---|---|
Titel | MAPL 2019 - Proceedings of the 3rd ACM SIGPLAN International Workshop on Machine Learning and Programming Languages, co-located with PLDI 2019 |
Redakteure/-innen | Tim Mattson, Abdullah Muzahid, Armando Solar-Lezama |
Herausgeber (Verlag) | Association for Computing Machinery (ACM), New York |
Seiten | 38-46 |
Seitenumfang | 9 |
ISBN (elektronisch) | 9781450367196 |
Publikationsstatus | Veröffentlicht - 22 Juni 2019 |
Peer-Review-Status | Ja |
Publikationsreihe
Reihe | PLDI: Programming Language Design and Implementation |
---|
Konferenz
Titel | 3rd ACM SIGPLAN International Workshop on Machine Learning and Programming Languages, MAPL 2019, co-located with PLDI 2019 |
---|---|
Dauer | 22 Juni 2019 |
Stadt | Phoenix |
Land | USA/Vereinigte Staaten |
Externe IDs
ORCID | /0000-0002-5007-445X/work/141545540 |
---|
Schlagworte
Forschungsprofillinien der TU Dresden
ASJC Scopus Sachgebiete
Schlagwörter
- Benchmarking, CLGen, Generative models, Machine Learning, Synthetic program generation