3D nanometer tracking of motile microtubules on reflective surfaces

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Jacob Kerssemakers - , Max Planck Institute of Molecular Cell Biology and Genetics, Technische Universität Delft (Autor:in)
  • Leonid Ionov - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Ute Queitsch - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Sheila Luna - , ETH Zurich (Autor:in)
  • Henry Hess - , University of Florida (Autor:in)
  • Stefan Diez - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)

Abstract

Quantitative, nanometerscale information of dynamic processes in nanobiological transport systems can be obtained using standard microscopy equipment. Biomolecular motor-driven nanodevices are dynamic, soft systems exhibiting rapid energy flow and mechanical motion. Active movement is a key ability of biological nanomachines, and finds applications in a number of hybrid bio-nanodevices. Fluorescently-labeled MTs were deposited onto polystyrene layers of varying thickness on Si chips to calibrate optical system. Rhodamine-labeled MTs were polymerized from bovine brain tubulin in BRB80 buffer with 4 mM MgCl2, I mM Mg-GTP, and 5% dimethylsulfoxide at 37°C. The fluorescence intensity of 30 MT segments of 2-μm length each on a glass surface, finding a standard deviation of less than 15%.

Details

OriginalspracheEnglisch
Seiten (von - bis)1732-1737
Seitenumfang6
FachzeitschriftSmall
Jahrgang5
Ausgabenummer15
PublikationsstatusVeröffentlicht - 3 Aug. 2009
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

PubMed 19367603
ORCID /0000-0002-0750-8515/work/142235569

Schlagworte

Schlagwörter

  • Fluorescence interference contrast microscopy, Kinesinmotors, Microtubules, Nanometer-tracking

Bibliotheksschlagworte