Weiter zum Inhalt Weiter zur Fußzeile

Applications of Diffusion Models in Communications

Aktivität: Vortrag oder Präsentation an externen Einrichtungen/VeranstaltungenVortragBeigetragen

Datum

5 Mai 2024

Beschreibung

Innovations in machine learning have brought advancements in other engineering fields employing machine learning as well, and the area of communications is one of them. Diffusion models have drawn enormous attention as a potent generative model and demonstrated remarkable sample quality, particularly in computer vision. In the communication engineering field, recent studies employed generative models to solve complicated problems such as to synthesize the channel distribution, to learn optimal designs of channel codes and signaling schemes, to remove channel noise and distortion, to optimize beamforming, etc. The emergence of diffusion models opened up the possibility of further development of such topics. This tutorial aims at providing an introduction of diffusion denoising probabilistic models and reviewing the application of diffusion models in communication engineering.

Konferenz

TitelIEEE International Conference on Machine Learning for Communication and Networking 2024
KurztitelICMLCN 2024
Dauer5 - 8 August 2024
Webseite
BekanntheitsgradInternationale Veranstaltung
OrtKTH Royal Institute of Technology
StadtStockholm
LandSchweden

Schlagworte

Forschungsprofilli­nien der TU Dresden

Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis