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Abstract

We extend the Ahlbrandt–Ziegler analysis of interpretability in ℵ0-categorical

structures by showing that existential interpretation is controlled by the monoid

of self–embeddings and positive existential interpretation of structures with-

out constant endomorphisms is controlled by the monoid of endomorphisms

in the same way as general interpretability is controlled by the automorphism

group.

1 Introduction

ℵ0-categorical structures (often called ω-categorical structures) appear quite natu-

rally in mathematics, and have extensively been studied by model theorists. They

appear for example as countable universal structures for classes of finite structures

with the amalgamation property. The best known example might be the countable

random graph, which can be seen as a universal amalgam of the class of all finite

graphs. The ℵ0-categorical structures can also be characterised by a transitivity

property of their automorphisms groups, which are so-called “oligomorphic permu-

tation groups”, and therefore they are also interesting for and have been studied by

group theorists. More on ℵ0-categorical structures can for example be found in [8],

Sections 7.3 and 7.4, [9] and [6].

In fact, much of an ℵ0-categorical structure is coded in its automorphism group.

Ahlbrandt and Ziegler in [1] have shown that a countable ℵ0-categorical structure

is, up to bi-interpretability, determined by its automorphism group as a topological

group. We extend this analysis and show that, with certain unavoidable restric-

tions, existential interpretability is controlled by the monoid of self-embeddings and

positive existential interpretability by the endomorphism monoid.

It would be interesting to further extend the theory (as far as possible) to prim-

itive positive interpretability on the one hand and polymorphism clones on the
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other hand; a characterisation of primitive positive interpretability in terms of the

topological polymorphism clone would have interesting consequences for the study

of the computational complexity of constraint satisfaction problems in theoretical

computer science.

2 Endomorphisms

2.1 Preservation theorems for ℵ0-categorical theories

In this paper, we only consider structures M in a countable signature without func-

tion symbols (i.e. relational possibly with constants). We denote by Aut(M) the au-

tomorphism group of M, by Emb(M) the monoid of embeddings1 of M into M, and

by End(M) the monoid of all endomorphisms of M. Then Aut(M) ⊆ Emb(M) ⊆

End(M) ⊆ MM . All these monoids carry the topology of pointwise convergence, a

basis of open neighbourhoods of which is given by the sets Uā,b̄ = {σ | āσ = b̄}.

Finally, Sym(M) denotes the symmetric group on M .

Remark 1 (a) Emb(M) and End(M) are closed in MM , because if a map is not

a homomorphisms, not injective or not strong, then this is already witnessed by a

finite tuple, hence a complete open neighbourhood does lack this property. Aut(M)

is closed in Sym(M), and more generally in the set of all surjections M → M , but

in general not in MM .

(b) Aut(M) = Emb(M) ∩ Sym(M), but in general there are more bijective endo-

morphisms than automorphisms as they need not to be strong. But then their inverse

maps are not homomorphisms. It follows that Aut(M) equals the set of invertible

elements of End(M) and therefore the largest subgroup of End(M).

Notations and conventions: For the sake of this paper, we call a structure ℵ0-

categorical if it is finite or a countable model of an ℵ0-categorical theory with an at

most countable language. We will freely use the characterisation of Engeler, Ryll–

Nardzewski and Svenonius (see [8], Theorem 7.3.1), which in particular implies the

ultrahomogeneity of an ℵ0-categorical structure: any two tuples of same type are

conjugate under the automorphism group.

We let endomorphisms act from the right side and write xσ for σ(x) and xστ for

τ(σ(x)), and in particular στ for τ ◦ σ.

Formulae, definability etc, are meant without parameters, unless otherwise spec-

ified. For the present paper, it doesn’t make a difference whether we understand

“existential formula” and “positive formula” up to logical equivalence or not. It is a

classical result that this works as well for “positive existential”, i.e. positivity and

existentiality can be realised simultaneously (see e.g. [7] Exercise 5.2.6).

Let Σ be a set of maps from M to M . Each σ ∈ Σ induces a map Mk →Mk (acting

component by component), also denoted by σ. The orbit of m̄ ∈Mk under Σ is the

1i.e. isomorphisms onto a substructure, or equivalently strong injective homomorphisms
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set of images m̄Σ = {m̄σ | σ ∈ Σ}. In general, the orbits are not the classes of an

equivalence relation. If X ⊆ Mk, then X is called closed under Σ if for all x ∈ X ,

the orbit xΣ is contained in X .

Proposition 2 ((a),(b) in [5], Theorem 5) Let M be an ℵ0-categorical struc-

ture, and X ⊆Mk.

(a) X is existentially definable in M if and only if X is closed under Emb(M).

(b) X is positive existentially definable in M if and only if X is closed under

End(M).

(c) X is positively2 definable in M if and only if X is closed under all surjective

endomorphisms of M.

(d) X is positive existentially definable in M in the language with 6= if and only if

X is closed under all injective endomorphisms of M.

(e) X is positively definable in M in the language with 6= if and only if X is closed

under all bijective endomorphisms of M.

Proof: It is well known by Ryll–Nardzewski etc. that X is definable if and only

if X is invariant under Aut(M), and because Aut(M) is a group, this is equivalent

to being closed under Aut(M). Therefore, we may assume that X is definable by a

formula φ.

(b) and (c): If M |= φ(ā) and φ is positive, then σ(M) |= φ(āσ) for every homomor-

phism σ. If σ is surjective or if φ is in addition existential modulo T , then it follows

that M |= φ(āσ).

For the other direction, we need the classical  Los–Tarski and Lyndon preservation

theorems (see [8] Theorem 6.5.4 and Corollary 10.3.5). By these well-known theo-

rems, if φ is not positive existential (not positive), then there are models Mi |= T ,

a (surjective) homomorphism σ : M1 → M2 and ā in M1 with M1 |= φ(ā) and

M2 6|= φ(āσ). Now choose a countable elementary substructure of (M1,M2, σ, ā).

Up to isomorphism, it has the form (M,M, σ′, ā), where σ′ is a (surjective) endo-

morphism of M. Then we get M |= φ(ā), but M 6|= φ(āσ
′

).

(d) follows from (b) and (e) from (c) just by adding 6= to the language. In the

same way (a) follows from (d) by adding negations of all the basic relations to the

language. �

Clearly, a set X ⊆Mk is closed under Σ ⊆ MM if and only if X is closed under the

closure of Σ in MM . Therefore, if Σ1 and Σ2 are dense in each other, then syntactical

properties characterised by Σ1,Σ2 are equivalent. If Σ1 = Aut(M) ⊆ Σ2, then the

converse also holds, which we will prove for the example Σ2 = Emb(M):

Corollary 3 (Bodirsky, Pinsker) An ℵ0-categorical theory with countable model

M is model complete if and only if Aut(M) is dense in Emb(M).

2⊤ and ⊥ are positive formulae.

3



Proof: “⇐=” follows from the general remarks above.

“=⇒”: According to Proposition 2 (a), self-embeddings preserve existential types,

hence complete types in case the theory is model complete. This implies āσ ≡ ā

for all finite tuples ā in M and all σ ∈ Emb(M). By the ultrahomogeneity of an

ℵ0-categorical model (tuples of same type are conjugate under the automorphism

group), this is equivalent to Aut(M) being dense in Emb(M). �

In the same style, every definable set is positively definable in M, if all surjective

homomorphisms are automorphisms.

2.2 Topology

Let M be an ℵ0-categorical structure and T its theory. We consider the topological

space End(M)/Aut(M) of right cosets of Aut(M) in End(M), i.e. the quotient of

End(M) by the equivalence relation

σ ∼ σ′ ⇐⇒ there is α ∈ Aut(A) with σ′ = σα,

equipped with the quotient topology, the finest topology which turns π : σ 7→ σ/∼

into a continuous map. Inverse images of the open sets are open sets in End(M) of

the form X · Aut(M) for open X ⊆ End(M).

Lemma 4 End(M)/Aut(M) and Emb(M)/Aut(M) are compact.

Proof: As Emb(M) is closed in End(M) and a union of right cosets of Aut(M), it is

sufficient to show the first claim. Consider an open covering (Ui)i∈I of End(M)/Aut(M).

We may assume that the inverse images Ũi := π−1[Ui] in End(M) are of the form

Uc̄i,d̄i
· Aut(M) = {σ ∈ End(M) | c̄σi ≡ d̄i}. Thus the Ũi from an open covering

of End(M) by sets which are unions of right cosets. It is sufficient to show that

End(M) is covered by finitely many of the Ũi. Fix an enumeration (mi)i∈ω of M .

If p is an n-type of T , let Up := U(m0,...,mn−1),ā · Aut(M) where ā is some/any real-

isation of p. Note that if Up 6= ∅ and ā |= p, then (m0, . . . ,mn−1) 7→ ā is a partial

endomorphism. Finally, let us say that an open set O is “covered” if there is an i ∈ I

with O ⊆ Ũi.

If Up is covered for some n ∈ ω and each of the finitely many n-types p, then the

coverings set form an open sub-covering of End(M). Therefore, we may assume that

for each n, there is an n-type pn(x0, . . . , xn−1) such that Upn
is not covered (and in

particular, Upn
6= ∅). The types pn form an infinite tree under inclusion, which is

finitely branched because of the ℵ0-categoricity. Hence, by König’s Lemma, there is

an infinite branch (pn)n∈ω. If (an)n∈ω realises
⋃

n∈ω pn, then σ : mn 7→ an defines

an endomorphism of M.

Now choose i such that σ ∈ Ũi, and let n be big enough such that c̄i is contained in

m̄ := (m0, . . . ,mn−1). Then Upn
= Um̄,m̄σ ⊆ Ũi: contradiction. This shows quasi-

compactness.

If σ 6∼ σ′, then there is a tuple ā with āσ 6≡ āσ
′

. Thus the open neighbourhoods

Uā,āσ · Aut(M) and Uā,āσ′ · Aut(M) separate σ and σ′. �

4



Remark 5 Aut(M) is not “normal” in Emb(M), i.e. the left coset σ · Aut(M) is

in general different from the right coset Aut(M) · σ.

Example 1 Let M be an equivalence relation with two classes, both countably

infinite; α is an automorphism that exchanges both classes, and σ is an embedding

that is the identity on one class and non surjective on the other class. Then σ−1ασ

can’t be extended to an automorphism of M, i.e. ασ is not of the form σα′ for some

automorphism α′.

3 Interpretations

The classical theory of interpretations of ℵ0-categorical theories as developed by

Ahlbrandt and Ziegler in [1] is briefly as follows. (An account of the theory and

more about interpretations can be found in Section 1 of [9] and in Section 5 of [8]).

In [1], ℵ0-categorical structures are considered as a category with interpretations as

morphisms, and “Aut” is made into a functor into the category of topological groups

with continuous group homomorphisms, where Aut(i) for an interpretation i of B

in A is the natural map Aut(A) → Aut(B) induced by i.

Theorem 1.2 in [1] A continuous group homomorphism f : Aut(A) → Aut(B) is

of the form Aut(i) for an interpretation i of B in A if and only if B is covered by

finitely many orbits under the image of f .

Two interpretations i1, i2 of B in A are called homotopic if {(x̄, ȳ) | i1(x̄) = i2(ȳ)} is

definable in A. Two structures A,B are bi-interpretable if there are mutual interpre-

tations i and j such that i ◦ j and j ◦ i are homotopic to the identity interpretations

idA, idB respectively.

Theorem 1.3 and Corollary 1.4 in [1] Two interpretations i1, i2 of B in A are

homotopic if and only if Aut(i1) = Aut(i2). The structures are bi-interpretable if

and only if there automorphism groups are isomorphic as topological groups.

Remark 6 In Theorem 1.2 of [1], one could as well have considered a continuous

monoid homomorphism Aut(A) → End(B) instead of a continuous group homo-

morphism Aut(A) → Aut(B). This is because a monoid homomorphism defined on

a group is a group homomorphism, and thus the group Aut(A) has to be mapped

into the largest group contained in End(B) which is Aut(B).

Our aim is to extend the classical results to endomorphisms on the one hand and

to syntactically restricted interpretations on the other hand.

3.1 The existential case

Let us call basic sets of a structure the universe, the diagonal, the interpretations of

the relational symbols in the language and the graphs of the interpretations of the
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functions symbols in the language. An interpretation of a structure N in a structure

M is existential (positive existential) if all inverse images of basic sets of N are

existentially (positive existentially) definable in M.

Theorem 7 Let A be an ℵ0-categorical structure with at least two elements. Then

B is existentially interpretable in A if and only if there is a continuous monoid

homomorphism f : Emb(A) → End(B) such that B is covered by finitely many

orbits under the image of f , or, equivalently, such that B is covered by finitely

many orbits under f [Aut(A)].

Proof: If B is covered by finitely many orbits under f [Aut(A)], then it is also

covered by finitely many orbits under f [Emb(A)]. We are going to show “⇐=” with

the weaker and “=⇒” with the stronger of the two covering conditions.

“⇐=”: Choose b̄ = (b1, . . . , bk) with bi ∈ B such that B is covered by the orbits of

the bi under f [Emb(A)].

Claim: There is a finite tuple ā in A with the following property: If āσ = āτ for

σ, τ ∈ Emb(A), then b̄f(σ) = b̄f(τ).

Proof of the Claim: We call a tuple ā good for σ if āσ = āτ implies b̄f(σ) = b̄f(τ)

for all τ . Fix σ0 ∈ Emb(A). Because f is continuous, f−1[Ub̄,b̄f(σ0) ] is an open set

containing σ0 and thus contains a basic open neighbourhood Uc̄,c̄σ0 of σ0. Then c̄

is good for σ0 because if c̄σ0 = c̄τ , then τ ∈ Uc̄,c̄σ0 , hence f(τ) ∈ Ub̄,b̄f(σ0) and thus

b̄f(σ0) = b̄f(τ).

Note that c̄ clearly is good for each other σ ∈ Uc̄,c̄σ0 , and also for all σ0α with α ∈

Aut(A), i.e. for the whole neighbourhood Uc̄,c̄σ0 ·Aut(A). For suppose c̄σ0α = c̄τ , then

c̄σ0 = c̄τα
−1

, hence b̄f(σ0) = b̄f(τα
−1) = b̄f(τ)f(α)

−1

because f is a monoid homomor-

phism and thus maps automorphisms onto automorphisms. Finally b̄f(σ0α) = b̄f(τ)

follows.

Now we have found a c̄i for each σi which is good for the neighbourhood Ui :=

Uc̄
i
,c̄

σi
i
·Aut(A). By the compactness of Emb(A)/Aut(A) shown in Lemma 4, finitely

many of these neighbourhoods, say U1, . . . , Ul, cover Emb(A). Then ā := c̄1⁀ · · ·⁀ c̄l

is a tuple which is good for all Emb(A). ♦

Let a′1, . . . , a
′
k be arbitrary pairwise distinct elements of A (or, if |A| < k, of some

sufficiently large power of A). We may assume that the a′i appear in the tuple ā

(otherwise extend ā by the a′i). Now we can continue as in Ahlbrandt–Ziegler:

Definition:

Let U :=
{

(a′i, ā)σ | i = 1, . . . , k, σ ∈ Emb(A)
}

and define f : U → B by (a′i, ā)σ 7→

b
f(σ)
i .

Note that by definition, U is closed under Emb(A), hence existentially definable

after Proposition 2.

Claim: f is well defined and surjective.

If (a′i, ā)σ = (a′j , ā)τ , then a′i
σ

= a′j
τ
, and, as a′i is contained in the tuple ā, also

a′i
σ = a′i

τ . Because τ is an embedding, hence injective, we get i = j. Now āσ = āτ

6



implies b
f(σ)
i = b

f(τ)
i by the construction of ā, proofing f to be well defined. The

surjectivity is clear by the choice of the b̄i. ♦

Claim: f is an existential interpretation.

Let X ⊆ Bl and consider f−1[X ] ⊆ A(m+1)l. An element ȳ therein has the form

ȳ =
(

(a′i1 , ā)σ1 , . . . , (a′il , ā)σl
)

with
(

b
f(σ1)
i1

, . . . , b
f(σl)
il

)

∈ X.

Let σ ∈ Emb(A). Then

ȳσ =
(

(a′i1 , ā)σ1σ, . . . , (a′il , ā)σlσ
)

∈ f−1[X ]

⇐⇒
(

b
f(σ1σ)
i1

, . . . , b
f(σlσ)
il

)

=
(

b
f(σ1)
i1

, . . . , b
f(σl)
il

)f(σ)
∈ X.

If X is a basic set of the structure B, then X is closed under End(B), thus the second

condition is satisfied, whence f−1[X ] is existentially definable by Proposition 2. ♦

“=⇒”: Let B be existentially interpreted in A by a surjection i : Al ⊇ U ։ B.

Then U = i−1[B] and E := i−1[=B] are existentially definable in A, hence closed

under Emb(A) by Proposition 2. It follows that every σ ∈ Emb(A) induces a map

σ∗ : B → B, uE 7→ uσE. Because the inverse image i−1[R] of every basic set R of

B is also existentially definable and thus closed under Emb(A), the map σ∗ is even

a homomorphism. This defines a mapping Emb(i) : Emb(A) → End(B), σ 7→ σ∗,

which clearly is a monoid homomorphism. The homomorphism is continuous: if ā, ā′

are inverse images of b̄, b̄′, then the open set Uā,ā′ lies in the inverse image of Ub̄,b̄′ .

By the general theory developed in [1], the interpretation i induces a continuous

group homomorphism Aut(i) : Aut(A) → Aut(B) in the same way as above, that

is Aut(i) is the map induced by Emb(i). Then by Theorem 1.2 in [1], B is covered

by finitely many orbits under the image of Aut(A) under Aut(i). �

Remark 8 In “⇐=”, it follows in particular that B is ℵ0-categorical, too.

If this is known before, and if Aut(B) is contained in the image of f —in particular

if f is surjective— then B is automatically covered by finitely many orbits under

the image of f .

If the image of f is contained in Emb(B), then Proposition 2 can be applied to B,

and the same argument as above shows that not only the inverse images of the basic

sets, but of all existentially defined sets of B are existentially definable in A.

3.2 The positive existential case

The proof of Theorem 7 works as well if one replaces “Emb” by “End” and “existen-

tial” by “positive existential”, except for the well definedness of f . The remark after

Lemma 14 will show that there is no general solution to this problem. Therefore,

we have to restrict our attention to a well behaved class of structures.

Definition 9 An ℵ0-categorical structure is called contractible if it has a constant

endomorphism.

7



Lemma 10 An ℵ0-categorical structure A is contractible if and only if for each two

tuples c̄0, c̄1 out of A of same length there is an endomorphism σ ∈ End(A) such

that c̄σ0 = c̄σ1 .

Proof: Clearly, a contractible structure satisfies the condition. Assume now that

the condition is satisfied. Given a tuple ā = (a1, . . . , ak), choose an endomorphism

σ with (a1, . . . , ak)σ = (a1, . . . , a1)σ. Then σ is constant = c on ā. By multiplying

with automorphisms we can assume that c is an element of a fixed representation

system {c1, . . . , cl} of the 1-types and moreover that it only depends on the type

of ā. If we do this for a long tuple composed from representations of all k-types,

we see that we can choose the value for each k even independently from the type

of ā. But then one of the finitely many values in question c1, . . . , cl must work for

every finite tuple, say c. Now End(A) is closed AA, therefore the constant map c is

an endomorphism. �

Theorem 11 Let A be an ℵ0-categorical, non-contractible structure. Then B is

positive existentially interpretable in A if and only if there is a continuous monoid

homomorphism f : End(A) → End(B) such that B is covered by finitely many orbits

under the image of f , or, equivalently, such that B is covered by finitely many orbits

under f [Aut(A)].

Proof: Take the proof of Theorem 7, replace “Emb” by “End” and “existential” by

“positive existential”, and change the definition of U as follows: Choose tuples c̄0, c̄1

of length l such that c̄σ0 6= c̄σ1 for all endomorphisms σ as given by Lemma 10. Then

let a′i be the ml-tuple (c̄0, . . . , c̄0, c̄1, c̄0, . . . , c̄0) where c̄1 is at the ith position. We

may assume m > 3.

Now if (a′i, ā)σ = (a′j , ā)τ for i 6= j, then by comparing the appropriate coordinates

we get c̄σ1 = c̄τ0 = c̄σ0 : contradiction. Thus again f is well defined and everything

goes through as in the proof of Theorem 7. �

In fact, for the direction “=⇒” we do not need A to be non-contractible. Therefore:

Proposition 12 If A is an ℵ0-categorical structure and if i is a positive existential

interpretation of B in A, then there is a continuous monoid homomorphism End(i) :

End(A) → End(B) such that B is covered by finitely many orbits under f [Aut(A)].

Corollary 13 “End” is a functor from the category of ℵ0-categorical structures

together with positive existential interpretations as morphisms into the category of

topological monoids with continuous monoid homomorphisms.

Proof: Check that the composition of positive existential interpretations is again

positive existential (replacing a quantifier-free sub-formula of a positive existential

formula by a positive existential formula yields again a positive existential formula).

The rest follows from Proposition 12. �

Finally we remark that Theorem 11 can’t be extended to arbitrary ℵ0-categorical

structures:

8



Lemma 14 If A is contractible and if B is positive existentially interpretable in A,

then B is contractible, too.

Proof: Let σ be a constant endomorphism of A and let B be positive existen-

tially interpreted in A by the interpretation i. Then σ∗ = End(i)(σ) is a constant

endomorphism of B. �

Note that there are non-contractible finite structures B, which by Lemma 14 are

not positive existentially interpretable in a contractible structure as for example

(N,=), but the conditions of Theorem 11 are trivially satisfied: the trivial monoid

homomorphism End(N,=) → End(B) is continuous and B, being finite, is covered

by finitely many orbits of the image {id}.

3.3 Bi-interpretability

For non-contractible structures, the theory of bi-interpretability of [1] can be ex-

tended to positive existential interpretations. In the general case, or for existential

interpretations, only partial results hold.

Definition 15 Following [1], we call two interpretations i1 and i2 of B in A End-

homotopic if End(i1) = End(i2). Two ℵ0-categorical structures A and B are posi-

tive existentially bi-interpretable if there are mutual positive existential interpreta-

tions i and j such that i◦j and j◦i are End-homotopic to the identical interpretations

idA, idB respectively.

Lemma 16 Let i1, i2 be two interpretations of B in A. Then End(i1) = End(i2)

holds if and only if the set Ii1,i2 := {(x̄, ȳ) | i1(x̄) = i2(ȳ)} is positive existentially

definable in A.

Proof: End(i1), End(i2) associate with an endomorphism σ ∈ End(A) the maps

induced by x̄ 7→ x̄σ, ȳ 7→ ȳσ, respectively. Both are the same if and only if (x̄, ȳ) ∈

Ii1,i2 implies (x̄, ȳ)σ = (x̄σ, ȳσ) ∈ Ii1,i2 . But according to Proposition 2 this is

exactly the case if Ii1,i2 is positive existentially definable. �

Proposition 17 Let A and B be ℵ0-categorical structures. If they are positive ex-

istentially bi-interpretable, then End(A) and End(B) are isomorphic as topological

monoids. The converse holds for non-contractible structures.

Proof: “=⇒”: Let i and j be mutual interpretations witnessing the positive ex-

istential bi-interpretability. Then j ◦ i is End-homotopic to the identical inter-

pretation, hence End(j) ◦ End(i) = End(j ◦ i) = End(id) = id. Symmetrically,

End(i) ◦ End(j) = id, hence End(i) = End(j)−1 has to be a bi-continuous isomor-

phism.

“⇐=”: If f : End(A) → End(B) is an isomorphism, then by Theorem 11, f and

f−1 yield interpretations f and f−1. The composition j := f−1 ◦ f : A → A then

9



induces the map End(A) → End(B) → End(A), σ 7→ f−1(σ) 7→ f(f−1(σ)) = σ,

hence End(j) = id = End(id). By symmetry, also End(f ◦ f−1) = End(id). �

The converse of Proposition 17 does not hold for arbitrary ℵ0-categorical structures,

as Lemma 14 together with the following lemma shows.

Lemma 18 The isomorphism type of End(A) does not determine whether A is

contractible.

Proof: Let A be contractible L-structure. We may assume the language L to be

relational. Let B be an L∪{c, P}-structure that results from joining a new element

c to A and a predicate P for the set A. Then B is not contractible, but clearly

End(A) and End(B) are isomorphic. �

On the other hand, each contractible structure contains an absorbing endomorphism

σ, i.e. τσ = σ for every τ (and if there are constant endomorphisms, then they are

exactly the absorbing elements). So non-contractibility can sometimes be seen from

the endomorphism monoid.

Whether there are similar interpretability results for contractible structures is un-

clear.

We will see in Section 4 that “Emb” is not a functor as “Aut” and “End” are.

Therefore, the characterisation of existential bi-interpretability via the embedding

monoids only holds in one direction. With definitions analogously to Definition 15

and the same proofs as for Lemma 16 and Proposition 17, we get:

Proposition 19 Let i1, i2 be two interpretations of B in A. Then Emb(i1) =

Emb(i2) holds if and only if the set Ii1,i2 := {(x̄, ȳ) | i1(x̄) = i2(ȳ)} is existen-

tially definable in A.

If Emb(A) and Emb(B) are isomorphic as topological monoids, then A and B are

existentially bi-interpretable.

The converse of the second part does not hold, as Example 5 below shows.

4 Examples

We have seen that “End” can be considered as a functor of the category of ℵ0-

categorical structures with positive existential interpretations into the category of

topological monoids with continuous monoid homomorphisms. This is not possible

for “Emb” and existential interpretations, for at least two reasons: ℵ0-categorical

structures with existential interpretations do not form a category, and the natu-

ral way to define Emb on morphisms leads to non-embeddings. We start with an

example for the second problem:
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Example 2 The image of a monoid homomorphism f : Emb(A) → End(B) is not

in general contained in Emb(B).

Let M1 be the following structure: M1 is a countably infinite set, E an equivalence

relation onM1 with infinitely many one-element classes, infinitely many two-element

classes and no others. The language just contains a symbol for E. In M1, the

structure M2 of an infinite, co-infinite predicate P is existentially definable as M1/E

with P being the image of the two-element classes. Now there are embeddings of

M1 mapping one-element classes into two-element classes. Their image in M2 are

endomorphisms that are not strong. �

M
(′)

2

P

c0 c1
. . . . . . . . .

↓

M
(′,′′)

1
. . . . . .

. . .

. . .
R

Q

c0 c1

↓E ↓↓

M0
. . .

. . .

. . .

. . .

. . .
. . .

↓E ↓

Squares correspond to elements of the structures; dotted lines do not correspond

to structure named in the signature.

Figure 1: Examples 2, 3, 4 and 5.

This phenomenon is in connection with the following: Aut(M) can be characterised

in the abstract monoid End(M) as the subgroup of invertible elements End(M)∗.

Therefore a homomorphism between endomorphism monoids restricts to a homo-

morphism between the automorphism group. Emb(M), on the other hand, can only

be defined in the “permutation monoid”3 End(M); no characterisation in the ab-

stract monoid is possible as Example 4 shows.

The following holds in general, with E = End(M):

{σ ∈ E | ∃τ ∈ E στ ∈ E∗} ⊆ Emb(M) ⊆ {σ ∈ E | ∀τ1, τ2 ∈ E (τ1σ = τ2σ ⇒ τ1 = τ2)}

Example 3 Take M1,M2 as in Example 2 and expand M1 to the structure M′′
1

by adding a predicate Q that picks exactly one element out of each two-element

class, and a predicate R for its complement. It is easy to see that the interpretation

of M2 in M′′
1 induces an isomorphism End(M2) → End(M′′

1 ). The image of the

injective endomorphisms of M2 are exactly the injective endomorphisms of M
′′
1 ,

but the image of Emb(M2) is only a proper subset of Emb(M′′
1 ). Thus “Emb” does

not allow an abstract characterisation. (Note that M2 is contractible, but M1 is

not, so they are not positive existentially bi-interpretable.) �

3I.e. the monoid with its action on the set M ; in analogy to “permutation group”, though the

elements of the monoid are not in generally acting as permutations.
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Example 4 The composition of existential interpretations need not to be existen-

tial:

Let M0 be the structure on a countably infinite set M0 with an equivalence rela-

tion with infinitely many three-element, two-element and one-element classes and

no others. It interprets existentially the structure M1 in Example 2 by collapsing

each three-element class to one element. The composition with the interpretation

in Example 2 however is not existential: it yields the interpretation of M2 in M0,

which on M0/E define a predicate for the images of the two-element classes. This

predicate is not existential. �

We conclude with an example of two structures M′
1,M

′
2 that are mutually positive

existentially interpretable, existentially but not positive existentially bi-interpretable,

and with non isomorphic embedding monoids.

Example 5 M′
1 is the structure M1 from Example 2 with an additional predicate

Q, that takes exactly one element out of each two-element equivalence class, and

with two additional non-equivalent constants c0, c1,living in one-element classes. M′
2

is the structure M2 of an infinite, co-infinite predicate P from Example 2 together

with two distinct constants c0, c1 not in P .

We interpret M′
2 positive existentially in M′

1 as M1/E with ∃y(Qy ∧ Exy) provid-

ing the predicate P and by keeping the two constants. We interpret M′
1 positive

existentially in M′
2 as follows: the universe is (M2 ×{c0})∪ (P × {c1}); the equiva-

lence relation E is “same first coordinate”, the predicate Q is P × {c1} and the two

constants are (c0, c0) and (c1, c0).

Both structures are bi-interpretable as they have the same automorphism group

Sω × Sω. But the endomorphism monoids are not isomorphic: In End(M′
1), there

is the endomorphism σ that collapses all two-element classes and is the identity on

Q and the one-element classes. This endomorphism satisfies σ2 = σ and commutes

with all automorphisms, hence is definable in the structure. There are three such

elements in End(M′
2): identity on P ∪{c0, c1} and either identity or constant = c0 or

c1 on the rest, but six in End(M′
1): the corresponding maps and their compositions

with σ.

It is easy to verify that the bi-interpretation above is in fact an existential bi-

interpretation. But Emb(M′
1) 6∼= Emb(M′

2), as can be seen with the following ar-

gument: Because of the bi-interpretability, both structures have isomorphic auto-

morphism groups, of isomorphism type Sω × Sω. If the two embedding monoids

were isomorphic, an isomorphism had to respect this decomposition as it is unique

in this group. Now in M′
2, each embedding σ is a (commuting) product of the

two embeddings σ↾P ∪ idM2\P and idP ∪ σ↾M2\P , and each of the two commutes

with one of the factors Sω. In M1 however, there are embeddings which move one-

element equivalence classes into two-element classes. Such an endomorphism cannot

be decomposed in that way. �

12



5 Concluding remarks

We have shown characterisations of existential and positive existential interpretabil-

ity in ℵ0-categorical structures:

• A structure B has an existential interpretation in an ℵ0-categorical structure

A if and only if there is a continuous monoid homomorphism f from the

monoid of self-embeddings of A to the endomorphism monoid of B such that

the domain of B is covered by finitely many orbits under the image of f .

• A structure B has a positive existential interpretation in an ℵ0-categorical

structure A without constant endomorphisms if and only if there is a contin-

uous monoid homomorphism f from the endomorphism monoid of A to the

endomorphism monoid of B such that the domain of B is covered by finitely

many orbits under the image of f .

It is open whether the second result also holds for ℵ0-categorical structures A,B

with constant endomorphisms.

It would be very interesting to find an analogous characterisation of primitive pos-

itive interpretability. A formula is called primitive positive if it is of the form

∃x1 . . . ∃xn(ψ1 ∧ · · · ∧ ψm)

where ψ1, . . . , ψm are atomic formulas. Primitive positive interpretations play an

important role for the study of the computational complexity of constraint satis-

faction problems. For a structure A with finite relational signature τ , the constraint

satisfaction problem for A, CSP(A), is the computational problem to decide whether

a given primitive positive τ -sentence is true in A. Such problems are abundant in

many areas of computer science.

It is well-known that if (every relation of) a structure B is primitive positively de-

finable in a structure A, then CSP(B) has a polynomial-time reduction to CSP(A).

Indeed, an important technique to show that CSP(A) is NP-hard is to find another

structure B such that CSP(B) is already known to be NP-hard, and to give a

primitive positive definition of B in A.

Primitive positive definability in an ℵ0-categorical structure A is captured by the

polymorphisms of A. A polymorphism of M is a homomorphism of some power

Mn (with the product structure) to M. A subset X ⊆ Mk is called closed under

polymorphisms if for all n, every polymorphism σ : Mn → M and all ā1, . . . , ān ∈ X

we have (ā1, . . . , ān)σ ∈ X . The following has been shown in [4]:

Theorem 20 Let M be an ℵ0-categorical structure and X ⊆ Mk. Then X is pos-

itive primitive modulo the theory of M if and only if X is closed under polymor-

phisms.

The classification of the computational complexity of CSP(A) for all highly set-

transitive structures A obtained in [3] makes essential use of this theorem.
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An even more powerful tool to classify the computational complexity of CSP(A)

is primitive positive interpretability. It has been shown in [2] that if a structure

B has a primitive positive interpretation in A, then there is a polynomial-time

reduction from CSP(B) to CSP(A). Hence, it would be interesting to have algebraic

characterisations of primitive positive interpretability in ℵ0-categorical structures.

Note that the set of all polymorphisms of a structure A can be seen as an algebra

whose operations are precisely the polymorphisms of A; we will refer to this algebra

as the polymorphism clone of A. In fact, the set of all polymorphisms forms an

object called clone in universal algebra. The following characterisation of primitive

positive interpretability has also been given in [2].

Theorem 21 Let A be finite or ℵ0-categorical. Then a structure B has a primitive

positive interpretation in A if and only if there is an algebra B in the pseudo-

variety generated by the polymorphism clone of A such that all operations of B are

polymorphisms of B.

It follows that for ℵ0-categorical structures A the computational complexity of

CSP(A) is determined by the pseudo-variety generated by the polymorphism clone

of A. We would like to give an alternative characterisation of primitive positive

interpretability in terms of the topological polymorphism clone of A, in analogy to

the theorems shown in this paper. In fact, we conjecture that the computational

complexity of CSP(A) is indeed determined by the topological polymorphism clone

of A.
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