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ABSTRACT. The Intrinsic Surface Finite Element Method (ISFEM) was recently proposed to
solve Partial Differential Equations (PDEs) on surfaces. ISFEM proceeds by writing the PDE
with respect to a local coordinate system anchored to the surface and makes direct use of the
resulting covariant basis. Starting from a shape-regular triangulation of the surface, existence of
a local parametrization for each triangle is exploited to approximate relevant quantities on the
local chart. Standard two-dimensional FEM techniques in combination with surface quadrature
rules complete the ISFEM formulation thus achieving a method that is fully intrinsic to the
surface and makes limited use of the surface embedding only for the definition of linear basis
functions. However, theoretical properties have not yet been proved. In this work we complement
the original derivation of ISFEM with its complete convergence theory and propose the analysis
of the stability and error estimates by carefully tracking the role of the geometric quantities
in the constants of the error inequalities. Numerical experiments are included to support the
theoretical results.
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1. INTRODUCTION

Surface phenomena are ubiquitous in nature, playing an important role in mediating exchanges
between contrasting media. They encompass a wide range of scales, from nano to planetary, with
examples including earth processes [3} [7, T2HI5], biological applications [20} 22} [24], and image pro-
cessing [0, 27]. These models are typically based on partial differential equations (PDEs) governing
balance laws of scalar, vector, and tensor quantities living on the surface. The detailed mathe-
matical understanding of these PDEs is still limited, and applications are tackled by numerical
techniques.

Most of the approaches developed so far for the discretization of surface PDEs rely heavily on the
embedding in the ambient Euclidean space to project quantities back to the surface. In essence, the
quantities of interest arising from the solution of the PDE are extended to a tubular neighborhood
of the surface and then projected back to the surface or its piecewise approximation, thus avoiding
altogether the need to use charts [23]. This strategy has allowed the development of conforming and
nonconforming finite element methods using the so-called Surface Finite Element (SFEM) originally
developed in [10] (see [11] for a recent review), with extensions to discontinuous Galerkin [2] and
low order virtual element methods [I6]. A different approach has been recently proposed in [4],
where the Intrinsic Surface Finite Element Method (ISFEM) has been developed and favorably
compared to the embedded approach of [I1] for the surface advection-diffusion-reaction equation.
A variant of this scheme has been used to develop arbitrary order virtual elements on surfaces [5],
by working directly on the chart. This latter scheme works in a geometrically intrinsic setting but
needs a complete knowledge of the parametrization.

The ISFEM method is based on piecewise linear approximations of the discrete spaces and relies
exclusively on geometric quantities that are intrinsic to the surface by using information related
only to the surface mesh and its piecewise affine approximation. The main advantage of ISFEM
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with respect to the embedded approach is that the numerical solution, whether scalar or vector or
tensor, is an object intrinsically defined on the surface, avoiding the need to define its extension
in R3 and its projection back to the surface. In addition, the formulation of the method does
not require in principle the explicit knowledge of the parametrization but can be defined directly
from a surface triangulation. Indeed, the ISFEM formulation in the scalar case requires only the
knowledge of the tangent plane at the vertices of the surface triangulation in a form that can
be exact, by means of the knowledge of the parametrization, or approximate, i.e., starting from
point data. The embedding of the surface I' in R? is used exclusively in the definition of the basis
functions. These are calculated by projecting onto local tangent planes a first order polynomial
defined either in the ambient space or on a local chart. All the other ingredients of the ISFEM
scheme use intrinsic geometric quantities supposed to be known at the vertices of the surface
triangulation. As a consequence, the method can freely use different embeddings (metrics), can be
adapted to multiple charts if available, and, unlike SFEM or other approaches(see e.g. [23]), can
be extended with few and straight-forward modifications to vector and tensor-valued PDEs .

In this paper we develop the full numerical analysis of ISFEM, not yet addressed in previous
work. It turns out that, after verification of the density of the discrete ISFEM subspaces, the
convergence estimates arise directly from the redefinition of an appropriate scalar product intrinsic
to I'. We start with the identification of a proper Local Coordinate System (LCS) anchored on the
surface I', we discuss the weak formulation of the PDE written in covariant form and defined on
appropriate surface Sobolev spaces, e.g., H!(T) for a closed surface without boundary or H}(T) for
a surface with homogeneous Dirichlet boundary. This operation introduces anisotropy due to the
presence of the metric tensor arising from the first fundamental form of I'. This anisotropy, whose
ratio remains always bounded for a regular surface, adds to the eventual anisotropy of a tensor-
valued diffusion coefficient. This added difficulty is counterbalanced by the fact that the ensuing
numerical discretization, being defined on the LCS and thus on the chart or atlas, can exploit
all the techniques developed for a planar two-dimensional domain and inherits all the related
properties. For this reason, in our convergence estimates we discuss how the inequality constants
depend upon the surface geometric quantities, intrinsic or extrinsic, i.e., depending on the first or
second fundamental form. Our calculations show that optimal second order convergence is obtained
under standard assumptions on the regularity of the mesh. This is experimentally discussed in
the numerical results section, where convergence rates with respect to a manufactured solution are
exposed and the behavior of the error constants at varying curvatures discussed. An example on
a sphere defined by multiple charts is also presented.

2. THE INTRINSIC SURFACE FEM

Consider a compact surface I' C R? over which we would like to solve an elliptic equation of the
form:

(1) — Vs (DVgu)=f on I,

where I' is assumed to be fixed in time and the solution v : I' — R is a scalar function defined
on the surface. The tensor D is a rank-2 symmetric and positive-definite diffusion tensor, and we
assume f € L?(T"). The differential operators V- and Vg, the surface divergence and gradient,
respectively, need to be properly defined to follow the geometric setting of the problem. If the
compact surface has no boundary, eq. (1) is augmented by the constraints of zero mean on u
and f. If the surface has boundary (i.e., 9T # {0}) we assume zero Neumann conditions, again
implicitly augmented by the zero mean constraints, or zero Dirichlet boundary conditions. For the
handling of non-homogeneous boundary conditions we refer to [g].

2.1. Geometrical setting. Let I' C R? be a 2-dimensional C* regular surface. We recall that a
surface ' C R? is said to be C* regular if for any point p € I' there exists a map ¢p : U — R3
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of class C*, with U C R2, such that ¢p(U) C T is a neighborhood of p, i.e., there exists an
open neighborhood V' C R? of p for which ¢,(U) = V NT, and such that ¢p is a diffeomrphism
of its image. The map ¢ is called a local parametrization centered in p. The inverse of the
parametrization, ¢, L2V NI — U, is called a local chart in p. Explicitly, we have the following
transformations:

¢:U—VNT p=¢ VNI —U
S—— X X +——S
where s = (s',s?) are the local coordinates, ¢p(U) is the coordinate neighborhood, and x =

(z*, 22, 2*) are the global Cartesian coordinates of a point on the surface. Given two points p,q € T’
and their local parametrizations ¢p, ¢q, with U, N Uq # 0, we say that the local parametrizations
are compatible if the transition map ¢p o ¢g lis a C* diffeomorphism. We assume to have a family
A = {¢s} of compatible local parameterizations ¢, : U, — T" such that I’ = Uy ¢, (Uy) (an atlas
for T).

Given a point p € T, the practical construction of the relevant objects proceeds as follows [3, 4].
We calculate the two tangent vectors t1(p) and ta(p) on T,I":

1 2 3
£i(p) = dp(e;(p)) = (?;; goaga ) L i=l2andj=123,

where d¢p, is the Jacobian matrix of the coordinate transformation and e;(p), e2(p), es(p) are the
canonical basis vectors of R3. For numerical stability, the vector ts is orthogonalized with respect
to t1 via Gram-Schmidt, yielding the orthogonal frame t1,ts on T,I'. The metric tensor is the
diagonal matrix given by:

(@ 0 N (g 0
@ g“’)'< 0 |t2<p>||2>( 0 gm<p>)'

The metric defines the surface scalar product (u,v), = g;u‘v’, and has inverse denoted by G=! =
{g%}. Tt is possible to show [9] that there exist constants ju, » and p} such that:

2 X 2
fror Wl <{w,w)g < ppfwl]” - for w e T,

where u, r = min{g;, g22} > 1 and p¥ = max{g;1, go»} are the minimum and maximum eigenvalues
of G. Moreover, we have the following global uniform bounds on the norms and determinant of

Gg(M):

() =il 67 @)

o a=swlg @), ger < VASET) < g
o

where g, r = mi{} g11(P)ga2(p) > 1 and g} = max VvV 911(P)g22(p). We will be using the symbol
pe oIS

[IIr| to denote the supremum over T' of the norm of the second fudamental form. This value can
be related to the curvatures of I'.

Differential operators. Within this setting it is possible to define the relevant intrinsic differen-
tial operators. For the intrinsic gradient of a scalar function f we have V,f = G7!V f, and
we can write the intrinsic divergence of a (contravariant) vector q = ¢'t; + ¢*ts as Vgo-q =

V- ( det(Q)q) /+/det(G). Note that here the flux vector q = —DV, f in eq. is a vector

tangent to T' for a general (symmetric) diffusion tensor D. Moreover, if D = €, eq. becomes
the classical Laplace-Beltrami operator, i.e. Vg-(DVg f) = eAgf, where:

_ _ b 19 (g of\ O [ [gu Of
Bof =VoVof = V911922 [651 ( 11 831) * 0s? < 922 352)] .
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The standard tools deriving from Stokes theorems hold with the intrinsic operators without any
modification. We first recall the formal definition of the integral of a function over a surface, which
does not depend on the parametrization [I]:

Definition 2.1.1. Let f : I' — R be a continuous function defined on a regular surface I' with
parametrization given by ¢ : U — I'. The integral of f on T is:

[1=] ., (Foo Vai@as.

Then, the following intrinsic Green’s formula holds:
(4) /<DV§U,V§U>QZ_/VQ'(DVQU)'U+/ (DVgu,p), v,
r r ar

where p : I' — R? denotes the vector tangent to I' and normal to ' with components written
with respect to the curvilinear reference frame (i.e. u = plt; + p?ts).

Remark 2.1.2. Throughout the paper, we identify I' with its local chart making sure to distinguish
when we work on VNI or on U by proper use the parametrization ¢p and its inverse. Note that
our intent is to maintain as much as possible the definitions of all the operations of our scheme on
the LCS defined on I'. To this aim, surface functions f : T — R are written in the LCS and need
to be integrated with respect to dVg, the volume form induced by the metric G. As a consequence,
our numerical scheme is defined directly on the surface and exploits the two-dimensional structure
of the reference system carried by the parametrization. To achieve our goal of minimizing the
use of the knowledge of the parametrization, we need to introduce surface quadrature rules defined
directly on V NT. On the other hand, the numerical analysis of the scheme exploits the results
already known for domains in R? and for this reason we find it easier and cleaner to work on
U C R?, i.e., the domain of the parametrization ¢p. This is achieved by formally using the inverse
parametrization and the relation dVg = /det(G) ds, so that integrals can be expressed with respect
to the standard two-dimensional Lebesgue measure ds, as provided in definition [2.1.1]

2.2. Intrinsic variational formulation. Without loss of generality we assume that I" is described
by a single (global) parametrization ¢ : U — T'. The ensuing results and the definitions extend
directly to the case of a surface defined by an atlas assuming, as mentioned before, that the
necessary transition maps are smooth.

Function spaces. We use standard definitions and notations for Sobolev spaces [9], which can be
directly extended to a compact manifold T' (see [I8, 28]). We denote with L?*(T') and H*(T') the
classical Hilbert spaces on I'. Explicitly:

L3(T) = {v TR : /v2 < oo} . H'T) = {v € L) : Vove (L2(F))2}.
r
Norms in L*(T') and H'(I') are denoted with ||| 2y and ||| ;1 (), respectively, and are given by:

2 2 2
ol ey = / 2 and (ol = / 24 / Voul?

where |V, U|§ = (Vgv,Vgv),. We will also use the H?-seminorm given by:

2 _ V2 27
|U|H2(I‘) /F| ”|g

where |V20| = tr((G~'V?v)?) with Vv being the second covariant derivative of v. We note that:

JIveol: <2 | [lonf + ezt [ o]
I I I
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where Cy is a generic constant depending on the parametrization, from which, recalling that
(Agv)? = [tr(G1V?0)]2 > tr((G~1V?v)?), it is easy to prove that the following holds:

(5) cllo®v]F: < Jvlze < CAgu]7s -

Note that the above inequalities are written without reference to the domain as they can be set
equally on the surface I' or the chart ¢—1(T') = U.

Intrinsic variational problem. Now we can write the intrinsic variational formulation of the elliptic
equation in the LCS as:

Problem 2.2.1. Find u € H(T'), with i = 0, such that:
a(u,v) = F(v) Yve HYT),

where the “stiffness” bilinear form and the “forcing” linear form are given by:

a(u,v):/F<DVgu,ng>g and F(v):/rfv.

Note that this is the direct extension to the surface I' of the classical variational formulation
of eq. . All the integrals are still written in intrinsic coordinates of our LCS.

Poincaré inequality. The dependence of the constants on the geometric characteristics of the sur-
face originates mainly from the use of Poincaré inequality, which is given without proof in the
following lemma.

Lemma 2.2.2. Let I’ a C'-regular surface without boundary and let u € H'(T) be a function with
average given by u = ﬁ fr u. Then, there exists a constant C. > 0 such that:

lu—all oy < Co IVoull oy ¥ ue HY(T)

Poincaré inequality can be adapted to surfaces with Neumann or Dirichlet boundaries in the
usual way (see, e.g., [§]). From now on we assume for simplicity that « = 0. As a consequence,
the L2 the H' norms are equivalent, as stated in the next straight-forward corollary.

Corollary 2.2.3. Let I' a C'-regular surface and let w € H*(T') be a function with zero average,
U= ﬁ fr u = 0. Then, the following inequalities hold:

||Vgu||L2(r) < Hu”Hl(F) < \ 1+ C2 Vs U||L2(F) :

Next we want to give detailed expressions of the constant C|. as a function of the geometric
characteristics of I'. We recall that the best Poincaré constant is related to the first nonzero
eigenvalue of the Laplace-Beltrami operator on I'. Indeed, it is easy to see that Cf = )\fl. Thus,
we need to distinguish the three cases of a compact surface with no boundary, a surface with
Dirichlet boundary 0'p and a surface with Neumann boundary 0" 5. Typically, bounds on these
eigenvalues are given in terms of the Ricci curvature, but we note that for surfaces in R? the Ricci
and the Gaussian curvature coincide up to a positive multiplicative constant. For this reason we
state everything in terms of the latter. We can summarize these results in the following lemma,
whose proof can be found in [19].

Lemma 2.2.4. Let I' be a regular surface with Gaussian curvature x bounded from below by a
constant —R (R > 0), and denote by p(I') the longest geodesic distance between two points. Then,
there exist two positive constants Cy and Co such that:

C C
AV > 712 exp(—=Cop(D)VR), and NP > 712 exp(—Cy(1+ p(D)VR)),
p(T) p(T)
where \Y identifies the case of a compact surface without boundary or with Neumann boundary
and AP the case of Dirichlet boundary.
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In what follows we will characterize all the constants in the ensuing inequalities by explicitly
keeping track of C|. to quantify the geometrical effects of the properties of the surface domain on
the error estimates.

Well-posedness. We list here the classical assumptions on the continuity and coercivity of the
bilinear form and continuity of the linear form defining the weak formulation For a(-,-) we
need the obvious hypothesis that the diffusion tensor D be positive definite, i.e., there exist two
positive constants d, and d* such that

(6) d, |\W||é < (Dw,w), <d* ||W||é forall weT,I' andforall pel.
Then we can state the following lemma.

Lemma 2.2.5. The bilinear form a(-,-) in problem is coercive and continuous, i.e., for any
u,v € HY(T) the following inequalities hold:

d* 2 *
(7) a(u,u) > Trc2 el oy la(u, v)| < d" [Jull g2 0y V] g2y -
r

Moreover, the linear form F(-) is continuous:
F@) < | fllpzry vl pzery -

Proof. The proof is a standard application of the equivalence between the L? and H' norms
in corollary and the inequalities in eq. :

d
2 * 2
a(u,u) == A <]D)Vg U,VQ U>g Z d* ||VQ U”LZ(F) Z W ||UHH1(F) .
For the continuity we write:
la(u, v)| < [[DVg UHL2(F) Vg ”HL2(F) <d ”u”Hl(F) ||UHH1(F) :
The continuity of F(-) is simply an application of the Cauchy-Schwarz inequality. ]

Under the above assumptions, the Lax-Milgram theorem holds:

Lemma 2.2.6 (Lax-Milgram theorem). Let V(I') be a Hilbert space and a : V(I') x V(I') — R
be a continuous and coercive bilinear form. For all continuous linear forms F : V(I') — R there
exists a unique function u € V(I') such that:

a(u,v) = F(v) Voey).

2.3. Intrinsic finite element method. Before going into the analysis of ISFEM, we would like
to describe the principal steps that form the ISFEM approach. We recall that our guiding principle
that justifies certain choices is to maintain the scheme as intrinsic as possible, i.e., we want to use
only intrinsic geometric quantities and use the surface embedding and the parametrization as little
as possible.

The surface triangulation. Let Tj,(T') = UNST; = cl(T) be a given geodesic surface triangulation
of T', formed by the union of non-intersecting surface triangles We denote by I'y, or T,(I'),) the
piecewise linear approximation of T, i.e., the union of 2-simplices in R?® having the same vertices
of Tx(T') and characterized by the mesh parameter h, the length of the longest chord between two
triangle vertices in T, (I"). We assume that 7,(T') is shape-regular, i.e., there exists a constant
¢ > 0 independent of h such that rr/hy > ¢ for all T, € T,(T'y), where rr is the radius of
the circle inscribed in T, and hr is the longest side of T}. By assumption, 75,(I's) is a closely
inscribed triangulation in the sense of [21], or equivalently, in the sense of [T1], which means that
Tn(T') C N5, where N is a tubular neighborhood of T' of radius § such that every point p € N
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has a unique orthogonal projection onto I'. As a consequence, for every flat cell T, C I', there
corresponds a unique curved cell T' C T', and this correspondence is bijective.

We will need to distinguish surface objects if described with respect to our LCS or with respect
to the Cartesian coordinate system of R3. To this aim, a tilde above symbols of surface objects
identifies their description with respect to the Cartesian coordinate system in R3. For example,
[, T and T, T will be used to identify the same objects, the surface or a geodesic triangle, when
expressed with respect to the LCS or the Cartesian coordinate system, respectively. Also, we will
need the assumption that each cell T' is contained in a single local parametrization. Recalling
remark we will denote with f a generic scalar function written with respect to the LCS,
and with f and f the same function written with respect to U C R? and the standard Cartesian
reference system of R?, respectively.

Intrinsic spatial discretization. Formally, we would like to work with the finite-dimensional P;-
conforming FEM space V;,(7,,(T')) € H'(T') given by:

(8) Va(Ti(D)) = {v, € CO(Ti(T)) such that v,|, € P1(T) ¥ T € Th(D)}.

However, this definition is meaningless since we do not know how to define P;(T"), namely the
space of first order polynomials in 7" with which we want to interpolate our solution. One way
to circumvent this problem is proposed in [25] 26], where surface barycentric coordinates are used
to generalize the classical linear interpolation on the surface. In this case the basis functions
are nonlinear and their calculation requires the solution of local cell-wise quadratic minimization
problems. Another approach is used in [5], where the equations, the variational formulation, and
the VEM bilinear forms are defined on the chart. In case, two-dimensional Lagrangian linear basis
functions can be defined in the usual way directly on the chart and can be used to evaluate the
needed integrals. This approach requires complete knowledge of the surface parametrization, since
a triangulation of the chart is needed. On the other hand, the ISFEM scheme in [4] does not
use of the knowledge of the parametrization but only of the tangent planes at triangle vertices.
Maintaining the goal of ISFEM to make use of the surface embedding and parametrization as little
as possible, the following strategy for the definition of the basis functions can be devised. We work
on an element-by-element basis as typical of FE methods and require the nodal ISFEM functions
restricted on the surface triangle T' to satisfy the classical interpolation property:

where p; € I are the nodes of T'. Given the global coordinates x(p) of p € T, we define the affine
function

(10) G,7(x) = a+ ba' + éx® + da®

as a function in R?. The coefficients can be calculated by imposing the fulfillment of eq. @ plus the
condition of passing through the point q = p; + N(p;) at unit distance from p; in the direction
normal to the surface at p;. Given a surface triangle 7" C I', the regularity of I' ensures the
existence of a local chart U C R? with parametrization ¢y, where we can find a triangle U, C U
such that ¢p : U, — T with U, = T}. This allows us to define the nonlinear basis function
ol = ¢;" o ¢y : Uy — R on this chart. Recall that we need to know the values of the basis
functions and its derivatives only at the quadrature points r;, e.g. the triangle vertices if using the
trapezoidal rule. These are readily known without the need to use the parametrization. Indeed, for
the function values we use the interpolation property of the nonlinear functions 7. Instead, for
the gradients, to maintain optimal accuracy we can consider only the linear part of ¢7 obtained by
projection onto the tangent planes defined at the quadrature points. Since ¢y, r, (Up) = Trif‘+0(h2)
optimal convergence is retained.
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Remark 2.3.1. The definition of the basis function 4,7 is the only phase of ISFEM in which
the embedding of T' in R3 is explicitly used. All the other phases require only the knowledge of the
tangent vectors spanning the tangent planes at the triangle vertices, thus requiring only intrinsic
geometric quantities. Notice that, if the above projection of the nonlinear basis function ¢T is done
on the plane containing Tj,, the Surface FEM approach described in [11)] is obtained.

Now, it is easy to see that the set {,] }?:1 spans V,,(T},), which can be used as ISFEM basis for
Vi(T) as the following density lemma shows.

Lemma 2.3.2. Let {@,” ?:1 be the P1 Lagrangian basis functions of Vi (T) defined in U, =
¢, ' (T), then:

||(pj - cﬁjTHL?(Uh) < C¢ |IIT| hi )
where Cy is a generic constant depending on the parametrization.

Proof. On the local chart Up, we can build a set of classical P; Lagrangian basis functions {go_jT}?-:l,
which span all the affine functions on Tj,. We can expand the parametrization locally at r as:

Onr(s) =x(r) +Vopre(r) x+ %XTH% (r)x + O(h?;) ,

where Hy, is the Hessian of the parametrization, and x = ¢, (s). The composition of ;" defined
in eq. (L0) with the linear part on the right-hand-side of the above equation gives a linear function
from Uj, to R that satisfies the interpolation property and thus coincides with ¢,”. The result thus
follows by noting that the second order remainder can be bounded by:

1
H —x"Hy, (r)x

5 < Cy |lp| b3 .

]

Remark 2.3.3. The last lemma implies that any function that satisfies the interpolation property
and reproduces ezactly linear functions when projected on the local tangent plane can be used
as ISFEM Py-basis function. Hence, the construction described above is only one of the many
possible examples. We will see another possibility in the numerical section when dealing with the
stereographic projection on the sphere.

The last step in the definition of our global basis functions ¢,, & = 1,..., N*/ is to glue
together as usual the elemental components. Note that, because of the interpolation property, the
resulting global basis functions are obviously conforming, albeit known only at the vertices. In
conclusion, every function v, in the functional space V;, (7T, (I')) can be written as:

Ndof

(11) on(s) = u(w)(s) = 3 vkpuls)  seT,
k=1

where Ij,(v,) indicates the ISFEM interpolant of v,, and v, are the nodal coefficients. Hence, the
intrinsic FEM variational formulation can be written in the LCS as:
Problem 2.3.4. Find up, € Vi(T,(T")) such that

a(up,v,) = F(v,) Vo, € Vp(Th(T)),

where the linear and bilinear forms are given by:

a(uh,vh):/GD)Vguh,ngh)g and F(vh):/fhvh.
r r
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Surface quadrature rules. Up to the definition of the test space Vi, (7x(T")), no numerical approxi-
mations are done until this point, since all the operators and integrals are defined on T3, (T") whose
interior coincides with the surface I We would like to remain within this setting as much as
possible. Approximation issues arise when we need to practically compute quantities. To this aim,
we assume that all the relevant geometric information related to the surface are known in exact
or approximate (but consistent) form at the vertices of the triangulation and proceed by defining
appropriate quadrature rules. In order to maintain optimal second order accuracy we need to
provide quadrature rules whose error is locally proportional to h2. Thus we can consider surface
extensions of the trapezoidal and the mid-point quadrature rules for triangles, as developed in [I7],
as modified and effectively used in [3, [4]. In this work we consider the trapezoidal rule given by:

1 3
(12) |1~ @un =3 1)) 4n,.

where Ar, is the cell area and f(p;) are the evaluation of the function f at the cell nodes. We
note that the above quadrature rule uses known information at the vertices of 75 (T"), and thus
does not require interpolation as the midpoint would.

Discrete norms. We will be using the discrete grid norm || f||, of a function f € V(7 (")) defined
as:

(13) Ing= Y 2o -y ““T’szp] =5l

TeTh(T) TeTH(T)

where f, = {fk}{vdaf = {f(pk)}{vdo‘f is the vector of coefficients of the linear combination on the
basis of V;, (75 (T)). This norm is equivalent to the L?-norm and, as a consequence, to the H!-norm.
In fact, we can write:

2

1l = [ = X [ prj = (1 M)

TETH(T)

The last scalar product can be controlled on both sides by the eigenvalues of the mass matrix M
to yield:

G 2 2 * 2
(14) 7 Wl < WA lz2y < 97 Il -
ISFEM formulation. Now all the ingredients of the ISFEM formulation are completed and we can
write:
Problem 2.3.5 (ISFEM formulation). Find up € V3, (Tr(T')) such that
a’h(uhavh,) = Fh(”h) Yo, € vh(ﬁl(r))a
where the linear and bilinear forms are given by:
A B
T
an(un,v,) = Y 5 > (D(p;) Vo un(py), Vo vi(Pi))g »
TeTn(T) Jj=1

and

-3 4o th p,)vn(p;)

TETH(T)
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3. NUMERICAL ANALYSIS OF ISFEM

In this section we provide convergence estimates showing that the ISFEM achieves optimal
(second order) convergence. Our theoretical results build upon the definition of the basis function
v, (eq. ) and the density estimate in lemmam The standard FEM theory is then adapted
to the intrinsic setting. Special attention will be devoted to the analysis of the influence on
convergence errors of surface geometric characteristics, such as, e.g., metric tensor and curvatures.
For this purpose we will introduce in our analysis different constants. The symbol C will denote
a generic constant not depending on A, nor on surface properties. The symbol K,; will be used
to identify constants that are independent of h; but depend upon different surface geometric
quantities. When working on single elements, we will use the symbol K, to denote the i-th
constant defined on T

As usual in FEM theory, this effort will be divided in two parts. First, the local analysis in
section [3.1] will develop approximation and interpolation errors on a single triangle. Then, these
local results will be combined in section [3.2] to yield the final estimates on the full surface.

3.1. Approximation errors on triangles. The strategy used for the proof of lemma [2.3:2] can
be employed also in this section. Hence, surface quantities will be written with respect to the
local chart Up, and the inequalities developed on this flat domain. These results can be transferred
to the surface element T, and this will be done in the global estimates of section In the
following, first, we will summarize some known results involving approximation errors of needed
surface quantities using [I1], 21] as main references. Then our interpolation and quadrature error
estimates will be developed.

3.1.1. Surface approximation errors. Given a point q € T}, we denote by pr(q) € T the orthogonal
projection of q onto T along the direction N(pr(q)). normal to the surface in pr(q). We state here
some results related to the approximation of surface triangles, which can be easily extended to the
entire surface. The proofs can be found in [I1} lemma 4.1].

Lemma 3.1.1. Given Ty, T and the projection map pr, the following estimates hold:
e the distance between the approrimate triangulation and the surface satisfies:

e
pr(q)q‘ < ChZ;

max
q€Th
e the ratio 6y, between the area measures ds and dx of the surface triangle T and its approz-
imation T, defined by ds = 0y, dx, satisfies:
2
1= 0nll e < Chz.
For any point q € T}, we define the relative curvature of T}, with respect to I' in q as follows.

Definition 3.1.2. Given W C Ty, the relative curvature wr(q) of any point @ € W with respect
toT is

—_—
wr(q) = PY(Q)Q‘ M| -

Then, the relative curvature of W is wr(W) = supgew wr(q)-

With reference to [2I], we can state the following surface approximation results.

Lemma 3.1.3. Given a geodesic triangulation Ty, (T) with surface triangles T and geodesic edges
o, and their approzimations Ty, and oy, in Tp(Tr), the following results hold.

(1) The curvilinear length £, of edge o is related to the Euclidean length {,, of the chord oy,

via the inequalities:
1
by, <lyg < —n-— Ao,
Th =79 = 1—UJF(O'h) Th
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where wr(oy) is the relative curvature of oy, with respect to T.
(2) The difference between the unit vector v_, aligned to the chord oy, and the unit tangent

vector tp to the geodesic edge at p satisfies:

1
v, ftp’ < 5 Il ¢,

(8) The surface area of the cell T is related to the planar area of T), by the relation:
|Ar — A, | < Cr (02, + wr(Th)) ,

where Cr is a constant depending on T and 0., is the maximum over all points q € Ty,
of the angle between the tangent planes T, T}, and T, T .

The following lemma is a straight-forward consequence of the above results:

Lemma 3.1.4. For any T), € T,,(I'y) we have:

e the relative curvature can be bounded by:

2
pr(q)q’ ‘Hpr(q)‘ < C|lr|h7;

wr(Ty) = sup
q€eTy

o the mazimum angle between tangent planes of T and Ty, can be bounded by:

Omox < C|Ilp| by .

3.1.2. Interpolation and quadrature errors. We start with estimates of the interpolation errors in
Vi(Th(T')). We first note that that, using the metric bounds in eq. (3), it is easy to prove the
following inequalities relating L?-norms of a function f and its gradient V f in the cell T and in
the chart Uy in R2:

Ger 1220,y < M G2ery = /; 1= /U F2V/et(G) ds < gi 1 1720,
h
2 2 2
16r IV 3o < 19 Sy = [ 1961

:/U 971V £[* VAet(@) ds < gich [V £ o)

The following Lemma provides the interpolation error estimate for I;(f) defined in eq. .

Lemma 3.1.5 (Interpolation error). Given a function f € H(T), let I(f) be the ISFEM inter-
polant in eq. (11). Then, we have:

I = In (D)l 2ry < OB W3 10l 2 5

Vo f—=Vs Ih(f)||L2(T) < CKzqhe ||82f||L2(Uh) )

where K, » = \/g; (1 +Cy \IIT|2) and Ky 7 = /CEK, 1.

Proof. Since Tp,(T'p,) is assumed to be shape-regular, using the standard planar interpolation error
and the basis function estimate in lemma we can write:

1f = (P 3aery < 95 (1 = 7 (Do) +Im (D) = T 0,
< 2 gr 10 Iy (1 + Co I12l?)
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where 7, (f) is the standard P; interpolation polynomial in U, C R2. For the gradient we obtain:
Vo f = Vo In(Dlzaer) < € g5 IV =m0 (D72, + 1V () = T 22
< €26 g3 W20 2w, (14 Co I )
|

Next, we switch our attention to the accuracy of the surface quadrature rule. Following the
results in [3] we show that the surface trapezoidal rule converges with optimal quadratic rate.

Lemma 3.1.6 (Surface Trapezoidal rule). Given a function f : T — R, the surface trapezoidal
rule is given by:

Qur(5) =213 1(wy)

j=1

and satisfies:

/T 7= Qur(D| < O02 (10° Fll gy Ko + 1 lp Ko )

where f(p;) is the value of f at the triangle vertices and K, = Cr |lr| (|IIr| + 1).

Proof. We denote by Q(f) the surface integral of the projection of f onto V3 (T), i.e., Q(f) =
fT I, (f). Application of the triangular inequality to the quadrature error yields:

[i- Qh,T(f)’ < ‘/Tf - Q(f)‘ L1QU) — Qur(D)] -

From lemma the first term can be bounded by:

[ £ Q| < 1 g o

while for the second term we use lemma, item

1/2
1)< 1<
QU) ~ Qur(P < 5 |32 F)| 1Ar — An | < 5 (S0 F0)7 ] 1Ar — As,
Jj=1 j=1
< 2l Cr (B +0r(T) < 3 1l z Cr Tl (Tz| +1).

Putting the two inequalities together we obtain:

|- Qh,T(f)‘ < B2 (10° ll o) Kor + £z Cr 1| (W] 4+ 1))
O

As a remark, we note that, analogously, the midpoint rule is characterized by a similar error
estimate, given by:

[ £ Quarth)] = €2 (10 0y Ko + Wi Ko )

where f(m,) is the value of f at the centroid m, of T', having nodal coordinates given by s(m;) =

> 1 s(pi)/3.
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3.2. Convergence analysis. In this section we collect the previously developed local error esti-
mates to build the global estimates forming the overall convergence theory of ISFEM. This analysis
proceeds following a standard FEM approach by combining consistency with interpolation errors.
Obviously, the developments must take into account the fact that our linear and bilinear ISFEM
forms are approximated using the trapezoidal or the midpoint rule. This is handled in a usual
fashion with the help of a discrete mesh norm ||-||, which is shown to be equivalent to the L?-norm
on I' to show coercivity of the discrete bilinear form. Then the surface extension of Strang Lemma
paves the way for the proofs of consistency and then of the final theorems on convergence in H'
and L? norms. The latter, being exactly the surface extension of the Nitsche-Aubin duality trick,
is only mentioned without proof. Everything will be done with the implicit assumption that the
surface trapezoidal rule is employed. The results for the midpoint rule are exactly the same, and
can be proved in a similar way.
We start our task by showing that the discrete bilinear form is coercive.

Lemma 3.2.1. The discrete bilinear form ap(-,-) in problem satisfies:

d*,u*,r
gr(1+CR)

2
l[vn HY(T)

ap (v, v,) >

Proof. Using the discrete coercivity and Poincaré inequalities, we obtain immediately:

3
an(Vn, va) = Z %Z<D(Pj)vgU}L(Pj)7ngfL(Pj)>g

TeTh(T) j=1
d*,U*,F

> diprr [V P> ) -
= dupir | gvhHh_g;“(l—&—C’f) [onll 5 (1)

The next step is the surface version of Strang lemma:

Lemma 3.2.2 (Surface Strang-like Lemma). Let u € HY(T') and up € Vi(Tn(T)) be solutions
of problem [2:2.] and problem [2.3.5, respectively. Then, the error w — uy satisfies:

LI (L+CF)
||U*uhHH1(r) < <1+d Fd 0 - Hu*UhHHl(F)
* Mo,

L g(1+CY (Su a(vn,wn) — an(vnw)| | F(w,) - Fh<wh>>

-+ sup
dift, v [|w,, HY(T) wh ||whHH1(F)

Proof. From the continuity of a(+,-) (lemma [2.2.5) and the triangle inequality, we can write for all
Vny, W, € Vi (Th(T)):
lan(un — vy, wy)| = la(u — v, w,) + a(vn, wi) — ap(vn, wy) — F(w,) + Fu(w,)|
<dlu— ”h“Hl(r) ||wh||H1(F) + la(vn, wn) = an (v, wi)| + |F(w,) — F(wa)] -
Using the coercivity of the discrete bilinear form, we obtain:

(un — vyt — ) = — T e i [
ap(Up — Up, Up — Uy _gﬁ(l—ka) Up — Uy Hl(F)lur)lh Wrll gy »

or, equivalently:
g:(14C2) “u lan (up — vy, w,)|

il wy, ||wh||H1(F)

Jun — UhHHl(r) =
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Putting together the two inequalities we obtain:

[ = unll ey < lu = vllgopy + llun = oull gy
g;(l—&-c‘f) lan (up — v, w,)|

ditter wn Wl

< lu— UhHHl(F)

3

from which the result follows. O

Note that the combination of the estimates of the interpolation error (lemma and the
trapezoidal rule error (lemma shows that the scheme converges with optimal (first) order of
accuracy in the H!(T')-norm. Indeed, it is possible to connect the constants of the error estimates
with the geometric characteristics of I', as the following consistency lemma states.

Lemma 3.2.3 (Consistency). For any continuous and coercive bilinear functional a : V(T') X
V([') — R and any continuous linear functional F : V(I') — R as given in pmblem the
discrete approzimations ap, @ Vi(Th(T)) X Vi(Th(T')) — R and F}, : Vi (Th(T')) — R given in
problem [2.3.5 are consistent. In other words, we have that for, any w, € V4 (T (T)),:

a) for the bilinear form a(-,-):

(15) |a(vhawh) - Ufh(vm wh)| <

4K, d*
o (2o e DS ) I o

*,I

where the “broken” H?-seminorm ‘H]D) Q_1|HH2(F) is given by:

DG iy = > (10 DU3azy + D32y 1926 Gy NG
TeTr(T)

2 —12 2
+ 410D 121 |0G 1HL2(T) HgHL2(T)) ;
b) for the linear form Fy(-):

4K
p =[£Il + hE, \mlflm(r)> lwsll ey
*,T

(16) |F(w,) — Fr(w,)| < Ch (

where the seminorm |f\H2(F) is defined by:

|32y = 10F 1720y + 10 FII2 1 -

Proof. The proof is an application of lemmas and The general strategy is to use the
triangular inequality to separate the interpolation and quadrature terms. Then, the relative error
estimates can be used to reach the conclusion.

Starting with the proof of eq. (L5)), we can write:

(A7) |a(vn,w,) — an(vn, ws)| < ‘/<Dvguh,vgwh>g—/Ih(<mvgvh,vgwh>g)
I T

+ /th(<Dngh,ngh>g)— Z %Z<D(pj)vgvh(Pj)avgwh(Pj»g

TeTh(T) j=1

For better clarity, we denote with g = (D Vv, Vgw,), the function defined on the surface and
withg=go¢ =DG 'V, - Vw, when working on the charts U or U,. Then we can write the
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first term in the previous equation as:

’ /Fg_ / Mg‘ T /|g @) <C S VArK, 12109 o)

TeTh(T) TeTh(T)
1/2

_ii2
<CVITIK R | > 199052,
TeTh(T)
Using the definition of g, we can estimate the norm of its second derivative as follows:

212 2 2 2 1112 2
> 1037w <D (||8 Dl[72¢ry + 410Dl 727y [|0G 7| oy 11122
TETH(T) TET;(T)

2 —1/2 2 2 2
+ ||D||L2(T) ||82g IHLz(T) ||g||L2(T)) ||V'Uh||L2(T) ||th||L2(T)

_ 2 2 2
< H|]D)Q 1|HH2(F) ||”h||H1(F) ||whHH1(r) )
where we have used the facts that 9*v, = 0 for any v, € V,(T,(U)) and G 'V, - Vw, =
(Vg v, Vgw,),, and we define the “broken” H?-seminorm |HID>Q*1|||H2(F) element-by-element to
allow for flexibility in handling space variable diffusion tensors.

The bound on the second term of eq. rests on the difference between the measures of T
and T}, via the estimate in lemma [3.1.3] Indeed:

[~ ¥ AThzgpg

TeTn(T)

Ah Jy. @10 63/Ae(@) ds — Ar, |
<> Z ‘ - .

TeTh(F)

Using the definition of discrete grid norm in eq. and the fact that ¢, o ¢ < 1, the above
inequality can be developed further as:

Az, 3 Ju, 50 dy/det(G) ds — AT,L
Z 3 Z: ‘ ATh

TeTh(T)

1 .AT — .AT 2 2
<3 lglls  sup 9q < 3K, h*|gll,

T€7-h (F) Th

where K; = maxy K; 1, with K5 » defined in lemmam (see also lemma|3.1.3 item. Recalling
that ||gl/, = [In(g)],, and g = (D Vg v,, Vg wh) we obtain:

‘/th( > ATh Zg (p))

TeTh(T)

< 3K, h2

thHHl(I‘) Hwh”Hl(F :

The final consistency estimate for the quadrature-based bilinear form then becomes:

‘a(vhawh) - ah(vha wh)|

4K, d*
< Ch( p )+ hK, \/\?H}Dg 1|”H2(F)> ||”h||H1(r) ”whHHl(F) :

;T

The proof of eq. proceeds analogously with g replaced by fw,.
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O

The previous lemma together with the interpolation and quadrature errors yield the main con-
vergence theorem for ISFEM.

Theorem 3.2.4 (Optimal H'-norm convergence). The ISFEM approach converges in the H*-
norm with optimal first order accuracy:

Ju— UhHHl(r) <Cih ||fHL2(r) + Coh? ||f||H2(r)

where the constants C1,Cy depend on the surface I' and its geometrical characteristics, and on the
upper and lower bounds of the diffusion tensor D.

Proof. The proof is a direct application of the previous two lemmas. Indeed, including the consis-
tency estimates into the surface Strang-like lemma we obtain:

Lon(14+C2)
o= ey < (14 E Y ol
* s, T
L0 ([ a(nw) —anew)] | (F(0) = FaGw,)
Al wp, ||whHH1(I‘) wp, ||wh||H1(F)
g:<1+02>> (K. + K, h)
<C(14d* L h||0%u
( e 0l
1
g1+ C? | (4K, \?
+ I (R ) (VA @) ey + 151 )

d*/Jf*,r Gx,r

+ BE, 02 (DG ooy a1 oy + 1 ey ] h,

where we chose v, = Ij,(u) and we used the inequality:

gr(1+C2)

s an(v,,v,)

2
||’Uhr||H1(F) =
gr(L+C7) [4|r|

dfis 39mr 1l 2y lvnll L2y

_ g1+ CP)

F; <
d*/l*,r h(vh) o

]

The estimate in the above theorem contains on the right-hand-side a standard term related
to the interpolation error plus a second term that goes to zero for a flat surface and it is thus
compatible with standard FEM P; estimates. Finally, we conclude this section by mentioning only
that using the standard duality arguments optimal L? convergence is obtained.

4. NUMERICAL EXPERIMENTS

In this section we provide numerical support to the results presented in the previous sections.
We present two different numerical experiments. In the first test case the aim is to show that
the value of the constant in the L2-error for the solution and its gradient increases while the
maximum value of the curvature increases. The second test case shows that the ISFEM method
can be directly applied in the presence of multiple charts, if compatible sets of tangent vectors are
available. Both test cases were considered already in [5] for the case of advection-diffusion-reaction
equation discretized on the chart and numerically solved by means of a geometrically intrinsic
version of the virtual element method. For the test case 2, we extend the result in [5] by directly
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- ! - !
w12 13 14 1.0-14 o -28 0 25 40 55 70

Max: 1.414 Max: 7.019

Max: 2.809 In:
Min: 1.000 Min: 1.000 Min: 1.000

FIGURE 1. Surfaces described by eq. with r = 2, Kk =5 and a = 0,0.5, 2,
respectively in the left, middle and right panels. The color map shows the value

of y/det(G(I")).

solving the equation on the sphere, without the use of extra conditions at the interface of the two
charts.

In all the experiments we consider a manufactured solution v : I' — R and calculate the
resulting forcing function f by substitution into the original equation. Note that, even a simple
manufactured solution would become highly nonlinear when considered on a surface, due to the
spatially varying geometric information.

Test case 1. For the test case 1 we consider the surface provided by the graph of the following
height function (see [B]):

(18) 2 = H(a',a?) = ¢ — (@) = (@) + acos? (k3 (@) + (7)) .

a trigonometric perturbation of a sphere, where r is the radius of the sphere, and a and k are the
amplitude and the frequency of the cosine trigonometric perturbation. We use the parametrization
I = {{z', 2>, H(z*,2*)} | 2* > 0 and (2')? + (2*)? > 1}, a radius r = 2 and a frequency k = 5.
Figure [1f shows the surfaces obtained with different values of the amplitude a: a sphere (a = 0) is
shown in the left panel, and two trigonometric deformations of the sphere are shown in the middle
and left panels for the case a = 0.5 and a = 2, respectively. The color map shows the distribution in
space of \/det(G(I')). The mesh sets used in this test case are obtained from subsequent refinements
of Delaunay triangulations of U = {{z*,2*} | 22 > 0 and (2')? + (2*)? > 1}, then elevated using
the height function eq. . We consider 8 levels of refinement, with a initial value of the surface
mesh parameter h = 0.25 at £ = 0. This corresponds to a total of 70 surface nodes for the case
of a = 0 and a = 0.05, while for the case a = 2 the total number of nodes is 265 for ¢ = 0. We
define v = x' as manufactured solution and we compute an expression for the forcing function
by the equation f(s',s?) = —Agu. We apply Dirichlet boundary condition by imposing the exact
solution at the boundary nodes.

Figure [2] shows the L2-errors and experimental orders of convergence for the solution and its
gradient. We notice second order convergence rates for the solution and first order for the gradient.
Convergence rates slightly different than the optimal ones at the initial levels are attributable to a
too coarse resolution of the surface triangulation, not accurate enough to approximate the surface.
In particular, this phenomenon can be observed in the case of higher values of the parameter a
that corresponds to higher values of the surface curvature.

Test case 2. We consider here I' = S2. We use two parametrizations, one for the northern and
one for the southern hemispheres, to define two sets of tangent vectors and consider the equator
as intersection set. A smooth transition map is known in this particular case. The stereographic
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FIGURE 2. TC1: Numerical convergence of L2-errors for the solution (left) and
its gradient (right) vs h on the surface triangulation. The convergence lines are
obtained by means of least-square approximation considering the last 2 point
values. The different lines denote the three different values of a considered: solid
line with triangular data points is used for the case a = 0, dashed line with circular
data points for a = 0.5, and dotted line with diamond data points for the case
a = 2. The optimal theoretical slope is represented by the lower right triangles.

z -1 -0.5 0 0.5 1

Max: 0.9985
Min: -0.9983

FIGURE 3. TC2: Numerical solution on the sphere (mesh level £ = 1), left panel,
and numerical convergences in the L2—norm for both the solution (solid line with
circular data points) and its gradient (dotted line with diamond data points), right
panel. The convergence lines are obtained by approximating via least-square the
last 3 point values.

projections for the northern hemisphere is given by:

25t 252 1—(s')2—(s%)2
T+ (52 + (s2)2° 1+ (s1)2 + (52)2 1+ (s1)2 + (57)2

L ) =),
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and similarly for the southern hemisphere, with the transition map between north and south

written as:
81
N

1 2 S?V 1 2
obn) = (e e o o) ~ )

The surface triangulation of the sphere is obtained by computing a Delaunay triangulation of the
disk, U = {{z',2%} | (2")? + (2*)? < 1}, then projecting the points to the surface using the two
stereographic projections. We consider a set of meshes with 6 levels of refinement, with a initial
value of the surface mesh parameter h = 0.532 and a total of 111 surface nodes. Analogously to
the first test case, we assume u = z* and compute the forcing function by f(s?,s?) = —Agu + u.
Note that in the case of the stereographic projection z' # s'. We need to make use of the inverse
of eq. (as well as the south projection) to compute the forcing function in the variables
s',s%. Figure |3 show on the left the manufactured solution and on the right the L?-errors and
experimental orders of convergence for the solution and its gradient. Again, we notice an optimal
order of convergence rates for both the solution and the gradient.
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