

Faculty of Computer Science • Institute of Theoretical Computer Science • Chair of Automata Theory

NAVIGATING THE \mathcal{EL} SUBSUMPTION HIERARCHY

Francesco Kriegel

Funded in DFG Project 430150274.

The 34th International Workshop on Description Logics (DL 2021), 20 September 2021

The *EL* Subsumption Hierarchy

- **Definition:** The \mathcal{EL} subsumption hierarchy is the set of all \mathcal{EL} concept descriptions, partially ordered by subsumption \sqsubseteq_{\emptyset} .
- One can navigate in this hierarchy by going up to subsumers and by going down to subsumees.

The *EL* Subsumption Hierarchy

- **Definition:** The \mathcal{EL} subsumption hierarchy is the set of all \mathcal{EL} concept descriptions, partially ordered by subsumption \sqsubseteq_{\emptyset} .
- One can navigate in this hierarchy by going up to subsumers and by going down to subsumees.
- How can smallest steps be made?
- **Definition:** *C* is a *lower neighbor* of *D* and *D* is an *upper neighbor* of *C* if
 - $\blacksquare \ C \sqsubset_{\emptyset} D,$
 - and there is no concept E such that $C \sqsubset_{\emptyset} E \sqsubset_{\emptyset} D$.

The \mathcal{EL} Subsumption Hierarchy

- **Definition:** The \mathcal{EL} subsumption hierarchy is the set of all \mathcal{EL} concept descriptions, partially ordered by subsumption \sqsubseteq_{\emptyset} .
- One can navigate in this hierarchy by going up to subsumers and by going down to subsumees.
- How can smallest steps be made?
- **Definition:** *C* is a *lower neighbor* of *D* and *D* is an *upper neighbor* of *C* if
 - $\blacksquare \ C \sqsubset_{\emptyset} D,$
 - and there is no concept E such that $C \sqsubset_{\emptyset} E \sqsubset_{\emptyset} D$.
- What is this good for?
- Sometimes it is desired to find a certain target concept but it is unclear how to compute it directly.
 - Example: Concept learning
 - Example: Ontology repair

The *EL* **Subsumption Hierarchy** Example: Concept Learning

- **Goal:** Find a (maximally general) concept *C* that satisfies some conditions.
- One might start with the most general concept ⊤ and subsequently go to a lower neighbor until a suitable concept *C* has been found.
- We will see later why such an approach is not feasible in practice.

The *EL* **Subsumption Hierarchy** Example: Ontology Repair

- In order to resolve inconsistency or to remove an unwanted consequence, the classical approach to repairing an ontology is deleting enough axioms.
- More fine-grained repairs can be obtained by *weakening axioms* instead of removing them completely.

The *EL* **Subsumption Hierarchy** Example: Ontology Repair

- In order to resolve inconsistency or to remove an unwanted consequence, the classical approach to repairing an ontology is deleting enough axioms.
- More fine-grained repairs can be obtained by *weakening axioms* instead of removing them completely.
- In a nutshell (specifically for repairing \mathcal{EL} TBoxes with the particular(!) weakening relation \succ^{sub}):

Let \mathcal{T} be a TBox and α an unwanted consequence of \mathcal{T} .

While there is a justification \mathcal{J} for the unwanted consequence α :

1 Choose some $C \sqsubseteq D$ in \mathcal{J} .

- **2** Find a (maximally strong) weakening $C \sqsubseteq E$ where $D \sqsubset_{\emptyset} E$ and such that $(\mathcal{J} \setminus \{C \sqsubseteq D\}) \cup \{C \sqsubseteq E\}$ does not entail α .
- **3** Replace $C \sqsubseteq D$ with $C \sqsubseteq E$ in \mathcal{T} .

The *EL* **Subsumption Hierarchy** Example: Ontology Repair

- **Goal:** Find *E* such that $C \sqsubseteq E$ is a maximally strong weakening of $C \sqsubseteq D$.
- One might start with *D* and subsequently go to an upper neighbor until a suitable *E* has been found.
- Again, we will see later why this will not work in applications.

The *EL* **Subsumption Hierarchy** Upper Neighbors and Lower Neighbors

- Each concept *C* has linearly many upper neighbors (modulo equivalence).
- The set of all upper neighbors of a concept *C* can be computed in polynomial time (modulo equivalence).

The *EL* **Subsumption Hierarchy** Upper Neighbors and Lower Neighbors

- Each concept *C* has linearly many upper neighbors (modulo equivalence).
- The set of all upper neighbors of a concept *C* can be computed in polynomial time (modulo equivalence).
- Each concept *C* has at most exponentially many lower neighbors (modulo equivalence).
- The set of all lower neighbors of a concept *C* can be computed in exponential time (modulo equivalence).

The *EL* **Subsumption Hierarchy** Upper Neighbors and Lower Neighbors

- Each concept *C* has linearly many upper neighbors (modulo equivalence).
- The set of all upper neighbors of a concept *C* can be computed in polynomial time (modulo equivalence).
- Each concept *C* has at most exponentially many lower neighbors (modulo equivalence).
- The set of all lower neighbors of a concept *C* can be computed in exponential time (modulo equivalence).
- See my paper for further details...

- A *chain* is a set of concepts $\{C_1, \ldots, C_\ell\}$ where $C_1 \sqsubset_{\emptyset} C_2 \sqsubset_{\emptyset} \cdots \sqsubset_{\emptyset} C_\ell$.
- Question: How long can a chain between two *EL* concepts be?

- A *chain* is a set of concepts $\{C_1, \ldots, C_\ell\}$ where $C_1 \sqsubset_{\emptyset} C_2 \sqsubset_{\emptyset} \cdots \sqsubset_{\emptyset} C_\ell$.
- Question: How long can a chain between two *EL* concepts be?
- An *antichain* is a set of concepts $\{D_1, \ldots, D_\ell\}$ where $D_i \not\subseteq_{\emptyset} D_j$ for all $i \neq j$.
- Why do we need antichains to analyze chains?

Let us first fix some notations.

- Assume that A_1, \ldots, A_k are different concept names.
- Further let r_i be a role name for each $i \ge 1$.
- Let \mathbb{E}_n be the part of the \mathcal{EL} subsumption hierarchy consisting of all concepts with a role depth $\leq n$.

Let us first fix some notations.

- Assume that A_1, \ldots, A_k are different concept names.
- Further let r_i be a role name for each $i \ge 1$.
- Let \mathbb{E}_n be the part of the \mathcal{EL} subsumption hierarchy consisting of all concepts with a role depth $\leq n$.

We can build chains from antichains as follows.

• $\mathbf{C}_0 \coloneqq \{\prod_{i=1}^j A_i \mid 1 \le j \le k\}$ is a chain in \mathbb{E}_0 such that $|\mathbf{C}_0| = k$.

If $\mathbf{A}_n = \{D_1, \dots, D_m\}$ is an antichain in \mathbb{E}_n , then $\mathbf{C}_{n+1} \coloneqq \{\prod_{i=1}^j \exists r_{n+1}. D_i \mid 1 \le j \le m\}$ is a chain in \mathbb{E}_{n+1} such that $|\mathbf{C}_{n+1}| = |\mathbf{A}_n|$.

Further notations:

- For each set A, let F(A) be the set of all sets that consist of exactly half of the elements in A.
- $\blacksquare |F(\mathbf{A})| = f(|\mathbf{A}|) \text{ where } f(m) \coloneqq \left(\lfloor \frac{m}{2} \rfloor \right).$

Further notations:

- For each set A, let F(A) be the set of all sets that consist of exactly half of the elements in A.
- $\blacksquare |F(\mathbf{A})| = f(|\mathbf{A}|) \text{ where } f(m) \coloneqq \left(\lfloor \frac{m}{2} \rfloor \right).$

We can construct the following antichains.

- $\mathbf{A}_0 \coloneqq \{ \prod_{C \in \mathbf{X}} C \mid \mathbf{X} \in F(\{A_1, \dots, A_k\}) \}$ is an antichain in \mathbb{E}_0 such that $|\mathbf{A}_0| = f(k)$.
- If \mathbf{A}_n is an antichain in \mathbb{E}_n , then $\mathbf{A}_{n+1} \coloneqq \{ \prod_{C \in \mathbf{X}} \exists r_{n+1}. C \mid \mathbf{X} \in F(\mathbf{A}_n) \}$ is an antichain in \mathbb{E}_{n+1} s.t. $|\mathbf{A}_{n+1}| = f(|\mathbf{A}_n|)$. ■ **Corollary:** $|\mathbf{A}_n| = f(f(\cdots f(k) \cdots)) = f^{n+1}(k)$.

n+1 times

Coming back to the chains:

- Since the antichain \mathbf{A}_{n-1} induces the chain \mathbf{C}_n where $|\mathbf{C}_n| = |\mathbf{A}_{n-1}|$ and since $|\mathbf{A}_{n-1}| = f^n(k)$, we obtain:
- Corollary: $|\mathbf{C}_n| = f^n(k)$.

Coming back to the chains:

- Since the antichain \mathbf{A}_{n-1} induces the chain \mathbf{C}_n where $|\mathbf{C}_n| = |\mathbf{A}_{n-1}|$ and since $|\mathbf{A}_{n-1}| = f^n(k)$, we obtain:
- Corollary: $|\mathbf{C}_n| = f^n(k)$.

What's more...

- $\{\exists r_n \cdots \exists r_1 (A_1 \sqcap \cdots \sqcap A_k)\} \cup \mathbb{C}_n \cup \{\top\}$ is a chain from $\exists r_n \cdots \exists r_1 (A_1 \sqcap \cdots \sqcap A_k)$ to \top in \mathbb{E}_n with length $\geq f^n(k)$.
- Since each chain can be refined to a chain of neighbors, it follows that there is a chain of neighbors from $\exists r_n \dots \exists r_1 . (A_1 \sqcap \dots \sqcap A_k)$ to \top in \mathbb{E}_n with length $\geq f^n(k)$.
- For each two concepts *C* and *D*, all chains of neighbors from *C* to *D* have the same length.
- Let's take a look on the values $f^n(k)$...

Very Long Chains of Neighbors The Cases where $k \leq 2$

- $f^n(k) \le 2$ for each $k \le 2$ and for each $n \ge 0$.
- Thus: we only get a constant lower bound.
- In fact, for each $k \leq 2$, each chain of neighbors from $\exists r_n \cdots \exists r_1 (A_1 \sqcap \cdots \sqcap A_k)$ to \top has a length linear in n.

Very Long Chains of Neighbors The Cases where $k \ge 3$

• $f(k) \ge (\sqrt[3]{3})^k$ for each $k \ge 3$.

Thus: we get a multi-exponential lower bound, namely with $b \coloneqq \sqrt[3]{3} \approx 1.44$ we have

$$f^{n}(k) = \underbrace{f(f(\cdots f(k) \cdots))}_{n \text{ times}} \ge \underbrace{b^{b^{\dots^{n}}}_{n \text{ times}}}_{n \text{ times}}.$$

■ **Corollary:** For each $k \ge 3$, each chain of neighbors from $\exists r_n \dots \exists r_1 . (A_1 \sqcap \dots \sqcap A_k) \mid 10^0$ to \top has a length *n*-fold exponential in *k*.

 b^k

The below table shows some values of the distance from $\exists r_1 \dots \exists r_n (A_1 \sqcap \dots \sqcap A_k)$ to \top .

$k \backslash n$	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	7
2	2	4	6	8	10	12	14
3	3	$8 \ge \binom{3}{1}$	$20 \ge 4$	$84 \ge \binom{4}{2}$	$8573 \ge \binom{6}{3}$	$? \ge \binom{20}{10}$	$? \ge \binom{184756}{92378}$
4	4	$16 \ge \binom{4}{2}$	$168 \ge \binom{6}{3}$	$? \ge \binom{20}{10}$	$? \ge \binom{184756}{92378}$	$? \gtrsim \binom{2.33 \cdot 10^{55614}}{1.16 \cdot 10^{55614}}$?
5	5	$32 \ge \binom{5}{2}$	$7581 \ge \binom{10}{5}$	$? \ge \binom{252}{126}$	$? \gtrsim \binom{3.63 \cdot 10^{74}}{1.82 \cdot 10^{74}}$?	?
6	6	$64 \ge \binom{6}{3}$	$? \ge \binom{20}{10}$	$? \ge \binom{184756}{92378}$	$? \gtrsim \binom{2.33 \cdot 10^{55614}}{1.16 \cdot 10^{55614}}$?	?
7	7	$128 \ge \binom{7}{3}$	$? \ge \binom{35}{17}$	$? \gtrsim \binom{4.54 \cdot 10^9}{2.27 \cdot 10^9}$?	?	?
8	8	$256 \ge \binom{8}{4}$	$? \ge \binom{70}{35}$	$? \gtrsim {\binom{1.12 \cdot 10^{20}}{5.61 \cdot 10^{19}}}$?	?	?
9	9	$512 \ge \binom{9}{4}$	$? \ge \binom{126}{63}$	$? \gtrsim \binom{6.03 \cdot 10^{36}}{3.02 \cdot 10^{36}}$?	?	?
10	10	$1024 \ge \binom{10}{5}$	$? \ge \binom{252}{126}$	$? \gtrsim \binom{3.63 \cdot 10^{74}}{1.82 \cdot 10^{74}}$?	?	?

Navigating the \mathcal{EL} Subsumption Hierarchy

A Consequence and an Application

Coming Back to the two Initial Examples: Concept Learning and Ontology Repair

- **Corollary:** Due to the existence of very long chains, one should never try to find a target concept by going along the neighborhood relation only without making jumps.
- For \mathcal{EL} , it can be shown that an **ideal** upward refinement operator applied to a concept C yields exactly the set of upper neighbors of C, and dually an **ideal** downward refinement operator applied to a concept C yields the set of lower neighbors of C.
- Thus, if one wants to utilize refinement operators in *EL* and cannot bound the number of consecutive refinement steps, one should not try to use an **ideal** refinement operator in applications.

A Consequence and an Application Deciding Optimality

- After all, we can devise a useful application...
- Sometimes, one wants to check whether a concept C is maximally specific for a monotonic property \mathcal{P} .
- To do so, one might enumerate the lower neighbors of C and then test whether any of these satisfies \mathcal{P} .
- This works dually with upper neighbors for checking if C is maximally general for \mathcal{P} .

That's it for now!

Do you have questions or comments?